www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Beweis geometrische Abbildung
Beweis geometrische Abbildung < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis geometrische Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Fr 29.06.2012
Autor: Sonnenblume2401

Aufgabe
Hallo an alle!

Sei [mm] $\pi$ [/mm] eine Ebene und sei [mm] $\alpha:\ \pi \longrightarrow \pi$ [/mm] eine geometrische Abbildung mit folgender Eigenschaft: die Abbildungen dreier kollineare Punkte sind kollinear, also A, B, C kollinear $\ [mm] \Rightarrow\ [/mm] $ [mm] $A'=\alpha(A),\ B'=\alpha(B),\ C'=\alpha(C)$ [/mm] kollinear.
Beweise, dass wenn $P',\ Q',\ R'$ drei kollineare Punkte sind, dann sind auch [mm] $P=\alpha^{-1}(P'),\ Q=\alpha^{-1}(Q'),\ R=\alpha^{-1}(R')$ [/mm] kollinear.


Kann mir bitte jemand weiterhelfen? Ich habe bereits bewiesen, dass [mm] $\alpha$ [/mm] drei nicht kollineare Punkte auf drei nicht kollineare Punkte abbildet. Kònnte mir das irgendwie weiterhelfen?

Danke danke an alle!

        
Bezug
Beweis geometrische Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Sa 30.06.2012
Autor: leduart

Hallo
mit dem was du schon hast schreut das dich nach indirektem Beweis!
Gruss leduart

Bezug
                
Bezug
Beweis geometrische Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Sa 30.06.2012
Autor: Sonnenblume2401

Danke Leduart!
Verstehe nicht ganz was du mit indirektem Beweis meinst... Wie kònnte ich begrùnden, dass das was ich beweisen will aus dem was ich schon bewiesen habe folgt?

Bezug
                        
Bezug
Beweis geometrische Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Sa 30.06.2012
Autor: leduart

Hallo
angenommen die $ [mm] P=\alpha^{-1}(P'),\ Q=\alpha^{-1}(Q'),\ R=\alpha^{-1}(R') [/mm] $ sind nicht kolinear?
folgt:: Wende [mm] \alpha [/mm] an....
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]