www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Optimierung" - Beweis einer Ungleichung
Beweis einer Ungleichung < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Mi 13.01.2010
Autor: signs

Aufgabe
Sei A [mm] \in \IR^{n+n} [/mm] symmetrisch positiv definit.
Zeigen Sie, dass für alle x [mm] \in \IR^n [/mm] gilt:

[mm] (x^Tx)^2 \le (x^TAx)(x^TA^{-1}x) [/mm]



Mir fehlt hier total der Ansatz.
Ich weiß, dass alle Eigenwerte positiv sind, aber wie bringt mich das weiter?
Wär nett, wenn mir jemand helfen könnte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Beweis einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mi 13.01.2010
Autor: fred97

Tipps: Spektralsatz für symmetrische Matrizen, Orthonormalbasis aus Eigenvektoren, Cauchy-Schwarzsche - Ungleichung

FRED

Bezug
                
Bezug
Beweis einer Ungleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:30 Mi 13.01.2010
Autor: signs

Danke.

Soweit hab ichs jetzt:

Da A reell und symmetrisch, sind die Eigenvektoren [mm] v_i [/mm] von A reell und orthogonal zueinander, d.h. es existiert eine Matrix S mit S = [mm] (v_1,...,v_n). [/mm] Somit ist S ist eine Orthogonale Matrix und S ist Orthonormalbasis des [mm] \IR^{n}. [/mm] Bezeichne [mm] \lambda_i [/mm] als der Eigenwert der zum Eigenvektor [mm] v_i [/mm] gehört, dann gilt [mm] S^{T}AS [/mm] = [mm] diag(\lambda_1,...\lambda_n), [/mm] d.h. eine Diagonalmatrix mit den Eigenwerten auf der Hauptdiagonalen.

Irgendwelche Fehler bisher?

Aber ich seh nicht, wie mich das jetzt weiterbringt.

Bezug
                        
Bezug
Beweis einer Ungleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 18.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Optimierung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]