www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweis einer Fibonacci-Formel
Beweis einer Fibonacci-Formel < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis einer Fibonacci-Formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:23 Mi 14.11.2007
Autor: konsolero

Aufgabe
Für [mm]n\in\IN[/mm] zeige man durch vollständige Induktion:
[mm]a_n_-_1[/mm][mm]a_n_+_1[/mm]-[mm]a^2_n[/mm]=[mm](-1)^n[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Guten morgen,

ich habe schon festgestellt, dass die Formel stimmt, wenn man es mit paar kleinen Zahlen ausprobiert. Induktionsschritt habe ich auch angewendet, also n+1 eingesetzt für n. Leider weiß ich dann nicht mehr weiter bzw. weiß nicht wie man die Formel: [mm]a_n_+_2a_n-a^2_n_+_1=(-1)(-1)^n[/mm] weiter behandelt.

Für Ideen und Hilfe wäre ich sehr dankbar.


        
Bezug
Beweis einer Fibonacci-Formel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Mi 14.11.2007
Autor: angela.h.b.


> Für [mm]n\in\IN[/mm] zeige man durch vollständige Induktion:
>  [mm]a_n_-_1[/mm][mm]a_n_+_1[/mm] - [mm]a^2_n[/mm]=[mm](-1)^n[/mm]

> Guten morgen,
>  
> ich habe schon festgestellt, dass die Formel stimmt, wenn
> man es mit paar kleinen Zahlen ausprobiert.
> Induktionsschritt habe ich auch angewendet, also n+1
> eingesetzt für n. Leider weiß ich dann nicht mehr weiter
> bzw. weiß nicht wie man die Formel:
> [mm]a_n_+_2a_n-a^2_n_+_1=(-1)(-1)^n[/mm] weiter behandelt.

Hallo,

vorweg: man kann Deiner Überschrift zwar entnehmen, daß es um Fibonaccizahlen geht, aber wäre ist trotzdem sinnvoll,
würdest Du die Voraussetzungen zur Aufgabenstellung mitliefern, hier also die Def. der Fibonaccifolge.

[mm] a_0:=0 [/mm]
[mm] a_1:=1 [/mm]
[mm] a_{n+1}:=a_{n}+a_{n-1}. [/mm]

(Wenn Deine geringfügig anders ist, ist das kein Drama, das Wesentliche siehst Du auch so.)

Dir geht es um den Induktionsschluß.

Hier ist zu zeigen:

[mm] a_na_{n+2} [/mm] - [mm] a_{n+1}^2=(-1)^{n+1}. [/mm]

Beweis:

es ist

[mm] a_na_{n+2} [/mm] - [mm] a_{n+1}^2= [/mm] ...

Nun mußt Du so lange umformen, bis Du am Ende [mm] (-1)^{n+1} [/mm] dastehen hast, und unterwegs muß die Induktionsvoraussetzung verwendet werden.

Du solltest an dieser Stelle zunächst die Rekursion für [mm] a_{n+2} [/mm] verwenden, also

[mm] ....=a_n*( a_{n+1}+a_n)- a_{n+1}^2 [/mm]

= ...


Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]