www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Beweis durch Induktion
Beweis durch Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 So 25.10.2009
Autor: R03N3

Aufgabe 1
Seien a und b reelle Zahlen und n eine natürliche
Zahl. Man beweise: [mm] a^{n}-b^{n}=(a-b)*\summe_{k=0}^{n-1}a^{k}*b^{n-1-k} [/mm]

Aufgabe 2
Man beweise die folgende Aussage für alle
natürlichen Zahlen [mm] n\in\IN: \summe_{k=0}^{2n}(-1)^{k}*k^{2}=2*n^{2}+n [/mm]

Hallo und schon mal vielen dank für jede Hilfe im vorraus.

Bei Aufgabe 1 und 2 soll man ja einen Beweis durch Induktion hervorbringen und das geschieht ja indem man die Aussage auch für n+1 beweist oder?

Also mein Ansatz bei Aufgabe 1 war:
[mm] (a-b)*\summe_{k=0}^{n-1}a^{k}*b^{n-1-k}+a^{n}*b^{0} [/mm] = [mm] (a-b)*\summe_{k=0}^{n}a^{k}*b^{n-k} [/mm]
Nun komme ich aber nicht weiter nachdem ich für k n-1 eingesetzt habe, sprich [mm] (a-b)*[a^{n-1}*b^{n-1-(n-1)}+a^{n}]=a^{n+1}+b^{n+1} [/mm]
Ich habe zwar schon weiter aufgelöst aber bin nie zum richtigen Ergebnis gekommen

Ähnlich sieht es bei Aufgabe 2 aus
Ansatz: [mm] \summe_{k=0}^{2n}(-1)^{k}*k^{2}+(-1)^{2n+1}*(2n+1)^{2}=\summe_{k=0}^{2n+1}(-1)^{k}*k^{2} [/mm]
Wobei [mm] -1^{2n+1} [/mm] ja immer negativ sein muss da für [mm] n\in\IN [/mm] ist ja 2n+1 immer ungerade oder?
Allerdings verhake ich mich auch hier bei der Auflösung

Naja lg und hoffe ihr könnt mir ein paar neue Ansätze geben oder sagen was ich falsch mache ;)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Beweis durch Induktion: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 21:04 So 25.10.2009
Autor: Loddar

Hallo R03N3!


Siehe mal hier, da wird gerade eine sehr ähnliche Aufgabe behandelt.


Gruß
Loddar


Bezug
        
Bezug
Beweis durch Induktion: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 22:56 So 25.10.2009
Autor: barsch

Hallo,

> Ähnlich sieht es bei Aufgabe 2 aus. Ansatz:
> [mm]\summe_{k=0}^{2n}(-1)^{k}*k^{2}+(-1)^{2n+1}*(2n+1)^{2}=\summe_{k=0}^{2n+1}(-1)^{k}*k^{2}[/mm]

Bedenke, dass du im Induktionsschritt zeigen musst, dass

[mm] \summe_{k=0}^{2\red{(n+1)}}(-1)^{k}*k^{2}=2*\red{(n+1)}^2+\red{(n+1)}. [/mm]

Es ist [mm] 2*\red{(n+1)}=2*n+2 [/mm]


Jetzt kannst du zum einen

[mm] \summe_{k=0}^{2\red{(n+1)}}(-1)^{k}*k^{2}=\summe_{k=0}^{2n}(-1)^{k}*k^{2}+(-1)^{2n+1}*(2n+1)^{2}+(-1)^{2n+2}*(2n+2)^{2}=... [/mm] (Tipp: Verwende hier die Induktionsvoraussetzung)

und zum anderen

[mm] 2*\red{(n+1)}^2+\red{(n+1)}=... [/mm]

berechnen.

> Wobei $ [mm] -1^{2n+1} [/mm] $ ja immer negativ sein muss da für $ [mm] n\in\IN [/mm] $ ist ja 2n+1 immer ungerade oder?

Ja! [mm] (-1)^{2n+1}=(-1) [/mm] bzw. [mm] (-1)^{2n+2}=1 \\\ \forall{n\in\IN}. [/mm]

Gruß barsch


Bezug
        
Bezug
Beweis durch Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Mo 26.10.2009
Autor: R03N3

Vielen Dank für eure Hilfe hab es hinbekommen ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]