www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Beweis durch Ausmultiplizieren
Beweis durch Ausmultiplizieren < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Ausmultiplizieren: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:00 Mo 14.09.2009
Autor: ahnungslos85

Aufgabe
Beweisen Sie durch ausmultipizieren von
[mm] (1+3+3^2+...+3^m)(3-1) [/mm]
die Formel
[mm] 1+3+3^2+...+3^m=(3^{m+1}-1)/2 [/mm]

Hallo an alle,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich hantiere jetzt schon seit ner ganzen Weile mit der Aufgabe herum und hänge immer wieder von neuem..
Wir hatten die Aufgabe in einer Übung und das ist leider schon ne Weile her...

Die Lösung der Aufgabe sieht folgendermaßen aus:

[mm] (1+3+3^2+...+3^m)* [/mm] (3-1)
[mm] =3+3^2+3^3+3^{m+1} -(1+3+3^2+...+3^m) [/mm]
=3^(m+1)-1

[mm] (1+3+3^2+...+3^m)(3-1)= [/mm] 3^(m+1)-1 /: (3-1)
= [mm] 1+3+3^2+...+3^m=1/(3-1) [/mm] (3^(m+1)-1)
[mm] =1+3+3^2+...+3^m=(3^{m+1}-1)/ [/mm] 2

Bei dem ersten Teil hängt es leider schon...wie komme ich auf 3^(m+1)-1? Wenn ich
[mm] 3+3^2+3^3+3^{m+1} -(1+3+3^2+...+3^m) [/mm]  habe dann bekomme ich        [mm] -1+3^{m+1}+3^m [/mm] heraus oder nicht? Und wie gehts dann weiter?

Ich hoffe mir kann jemand einen Tipp geben
Danke im Voraus!

Gruß

        
Bezug
Beweis durch Ausmultiplizieren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mo 14.09.2009
Autor: steppenhahn

Hallo!

> Die Lösung der Aufgabe sieht folgendermaßen aus:
>  
> [mm](1+3+3^2+...+3^m)*[/mm] (3-1)
>  [mm]=3+3^2+3^3+3^{m+1} -(1+3+3^2+...+3^m)[/mm]
> =3^(m+1)-1

> Bei dem ersten Teil hängt es leider schon...wie komme ich
> auf 3^(m+1)-1? Wenn ich
> [mm]3+3^2+3^3+\red{...} + 3^{m+1} -(1+3+3^2+...+3^m)[/mm]  habe dann bekomme ich
>        [mm]-1+3^{m+1}+3^m[/mm] heraus oder nicht?

Nein, bekommst du nicht.
Ich denke, wir sind uns einig, dass

[mm] $(1+3+3^2+...+3^m)*(3-1) [/mm] = [mm] (\blue{3 + 3^{2} + 3^{3} + ... + 3^{m} }+ 3^{m+1}) [/mm] - (1 + [mm] \blue{3 + 3^{2} + ... + 3^{m-1} + 3^{m}})$ [/mm]

ist. Und nun sieht man doch, dass die beiden Klammern fast dieselben Summanden haben - nur hat die erste Klammer eben den Summanden [mm] 3^{m+1}, [/mm] den die zweite Klammer nicht hat - und die zweite Klammer hat den Summanden 1, den die erste Klammern nicht hat. Und weil die zweite Klammer ein Subtrahend ist, ist es eben -1, also:

[mm] $(1+3+3^2+...+3^m)*(3-1) [/mm] = [mm] (\blue{3 + 3^{2} + 3^{3} + ... + 3^{m} }+ 3^{m+1}) [/mm] - (1 + [mm] \blue{3 + 3^{2} + ... + 3^{m-1} + 3^{m}}) [/mm] = [mm] 3^{m+1}-1$ [/mm]



> [mm](1+3+3^2+...+3^m)(3-1)=[/mm] 3^(m+1)-1 /: (3-1)
>  = [mm]1+3+3^2+...+3^m=1/(3-1)[/mm] (3^(m+1)-1)
>  [mm]=1+3+3^2+...+3^m=(3^{m+1}-1)/[/mm] 2

> Und wie gehts dann
> weiter?

Naja, dann geht man von der gerade erwirtschafteten Gleichung aus:

[mm] $(1+3+3^2+...+3^m)*(3-1) [/mm]  = [mm] 3^{m+1}-1$ [/mm]

Und verwendet nun im Wesentlichen die Tatsache, dass (3-1) = 2 ist :-)

[mm] $\gdw (1+3+3^2+...+3^m)*2 [/mm]  = [mm] 3^{m+1}-1$ [/mm]

[mm] $\gdw (1+3+3^2+...+3^m) [/mm]  = [mm] \frac{3^{m+1}-1}{2}$ [/mm]

Voilá! :-)

Grüße,
Stefan

Bezug
                
Bezug
Beweis durch Ausmultiplizieren: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Mo 14.09.2009
Autor: ahnungslos85

Vielen Dank,

ist sehr einleuchtend. Nur irgendwie kam ich nicht darauf...

Gruß
die ahnungslose85

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]