www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Beweis der Stetigkeit
Beweis der Stetigkeit < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Fr 05.01.2007
Autor: ueberforderter_Ersti

Aufgabe
Für n [mm] \in \IN [/mm] seien die Funktionen [mm] f_{n}: \IR \to \IR [/mm] deiniert durch [mm] f_{n}(x):= \bruch{nx}{5+|nx|} [/mm]
Zeige dass alle Funktionen [mm] f_{n} [/mm] stetig sind

Ich habe mir versucht verschiedene Skizzen zu machen für verschiedene n, die Stetigkeit ist mir auch einigermassen einleuchtend, nur habe ich keine Ahnung wie man Stetigkeit beweisen kann.
Funktionswert = Grenzwert
Leider weiss ich nicht wie ich das anwenden kann, könnte mir hier jemand helfen?
Vielen Dank im Vorraus!

p.s. Ich habe diese Frage auf keine andere Internetseite gestellt.

        
Bezug
Beweis der Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Fr 05.01.2007
Autor: angela.h.b.


> Für n [mm]\in \IN[/mm] seien die Funktionen [mm]f_{n}: \IR \to \IR[/mm]
> deiniert durch [mm]f_{n}(x):= \bruch{nx}{5+|nx|}[/mm]
>  Zeige dass
> alle Funktionen [mm]f_{n}[/mm] stetig sind
>  Ich habe mir versucht verschiedene Skizzen zu machen für
> verschiedene n, die Stetigkeit ist mir auch einigermassen
> einleuchtend, nur habe ich keine Ahnung wie man Stetigkeit
> beweisen kann.
>  Funktionswert = Grenzwert
>  Leider weiss ich nicht wie ich das anwenden kann, könnte
> mir hier jemand helfen?


Hallo,

Du kannst Dir die Funktionen ja abschnittweise definiert aufschreiben.

A. Für n=0 hat man [mm] f_0(x):=0. [/mm]   Hier erübrigen sich sowieso weitere Überlegungen, denn die Stetigkeit dieser Funktion ist klar.

B. Für n>0  hat man:

[mm] f_n(x):=\begin{cases} \bruch{nx}{5+nx}, & \mbox{für } x\ge 0 \mbox{ } \\ \bruch{nx}{5-nx}, & \mbox{für } x< 0 \mbox{ } \end{cases} [/mm]

Man sieht, daß es nur eine kritische Stelle gibt, an welcher überhaupt die Stetigkeit infrage steht, die Stelle x=0.

Ist an dieser Stelle [mm] \limes_{x\rightarrow 0}f(x)=f(0) [/mm] ?
Irgendwie ja schon, oder? Man muß es nur beweisen...

Ein bißchen kommt es jetzt darauf an, wie Ihr Grenzwerte von Funktionen und Stetigkeit eingeführt habt.

ICH würde es mit dem [mm] \varepsilon -\delta-Kriterium [/mm] für Stetigkeit (kam es vor?) beweisen:

Du nimmst Dir ein [mm] \varepsilon>0, [/mm] wähltst ein dazu passendes [mm] \delta:= [/mm] ??? (die konkrete Wahl verschieb auf später, wenn Du weißt, was paßt!), betrachtest die x in einer [mm] \delta-Umgebung [/mm] von 0, also die x mit [mm] |x-0|<\delta, [/mm] und zeigst:  [mm] |f(x)-f(0)|<\varepsilon. [/mm]

C. n<0.   Analog.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]