www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Formale Sprachen" - Beweis das eine Sprache reg.
Beweis das eine Sprache reg. < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis das eine Sprache reg.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:56 Mi 11.04.2012
Autor: Parkan

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei $L\subseteq\Sigma^{\star}$ eine beliebige Sprache und $a\in\Sigma$. Definiere:

$La := \{w\in \Sigma^{\star} \mid \ \text{es gibt ein Wort 'wa' in } L\}$

$La$ entsteht also aus $L$, wenn man nur auf $a$ endende Worte aus $L$ betrachtet und bei denen dieses letzte $a$ streicht.

Zeige: Wenn $L \subseteq \Sigma$ eine beliebige reguläre Sprache ist, dann ist auch La regulär.






Ich habe versucht einen DFA zu zeichnen der La akzeptiert, aber egal wie ich das mache ist dieser DFA mächtiger als nötig. Mir fehlt also der Ansatz wie ich das beweisen kann. Kann mir da ein Tipp geben?

Mein DFA sieht so aus.
x={a..z)
y= x ohne a
Z1,Z2 sind Zustände, wobei Z2 ein Endzustand ist
Z1---x-->Z1
Z1---y-->Z2
Also endet kein Wort mit einem a

Danke


        
Bezug
Beweis das eine Sprache reg.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 13.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]