www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Beweis bei komplexer Funktion
Beweis bei komplexer Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis bei komplexer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 01.11.2011
Autor: Paschl

Aufgabe
Es sei [mm] z0\in\IC [/mm] gegeben mit [mm] \left| z0 \right|< [/mm] 1. Wir definieren eine Funktion:
[mm] w=w(z)=\bruch{z-z0}{z*\bar {z0} -1} [/mm]

mit [mm] z\in\IC [/mm] und [mm] z*\bar{z0} \not=1 [/mm]

Zeigen sie: [mm] \left| z \right|<1<=>\left| w(z) \right|)<1. [/mm] Was bewirkt die Abbildung z->w(z)(geometrisch formuliert)?
Hinweis: Zeigen sie zuerst [mm] \left| (z*\bar {z0}-1) \right| ^2-\left| (z-z0) \right|^2= (1-\left| (z) \right| ^2)*(1-\left| (\bar {z0}) \right|^2) [/mm]

Komm auf keinen Ansatz bei der Aufgabe ... weiß auch nich was es mir helfen soll das beim hinweis zu zeigen...
wäre echt toll wenn mir jemand ne relativ ausführliche antwort geeben könnte ... wäre um jeden Ansatz froh...hab noch nich sooo viel erfahrung mit dem rechnen von komplexen funktionen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke im Vorraus

LG

        
Bezug
Beweis bei komplexer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Mi 02.11.2011
Autor: wauwau

[mm]\left|z*\bar {z_0}-1 \right| ^2-\left| z-z_0 \right|^2= (1-\left| z \right| ^2)*(1-\left|\bar {z_0} \right|^2)[/mm]

Wenn du das gezeigt hast, - hast du dochj? - betrachtest du die rechte Seite und die ist wegen $|z|<1$ und [mm] $|z_0|<1$ [/mm] natürlich >0

daher hast du
$0 < [mm] |z*\bar{z_0}-1|^2 [/mm] - [mm] |z-z_0|^2$ [/mm]

[mm] $|z-z_0|^2 [/mm] < [mm] |z*\bar{z_0}-1|^2 [/mm] $

[mm] $|\omega(z)|^2 [/mm] =  [mm] \frac{|z-z_0|^2}{|z*\bar{z_0}-1|^2} [/mm] < 1$ q.e.d

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]