www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Relationen" - Beweis Äquivalenzrelation
Beweis Äquivalenzrelation < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Äquivalenzrelation: Aufgabe, Beweis
Status: (Frage) beantwortet Status 
Datum: 14:59 Di 01.12.2009
Autor: saint

Aufgabe
Die Relation [mm] \cong [/mm] ist auf [mm] \IZ [/mm] definiert durch [mm] a\cong [/mm] b , falls a - b = 7k für ein [mm] k\in\IZ\sub [/mm] .
Zeigen Sie, dass [mm] \cong [/mm] eine Äquivalenzrelation ist.

Hallo Zusammen!
Da ich mich (noch) nicht so wirlich mit Beweisen auskenne, würde ich das Ganze so versuchen:

Bedingung für Äquivalenzrelation:
a.) reflexiv
b.) symmetrisch
c.) transitiv

zu a.) Die Relation ist Reflexiv, da
(a,a) [mm] \in [/mm] R : [mm] \forall [/mm] a [mm] \in\IZ [/mm]
   a - a = 7k
   a - a = 7 * 0 , wahr da 0 [mm] \in\IZ [/mm]

zu b.) Die Relation ist symmetrisch, da
[mm] \forall [/mm] (a,b) [mm] \in\IZ [/mm] : (a,b) [mm] \in [/mm] R [mm] \Rightarrow [/mm] (b,a) [mm] \in [/mm] R
   a - b = 7k
   b - a = 7 * (-k)

zu c.) Die Relation ist transitiv, da
[mm] \forall [/mm] a,b,c [mm] \in\IZ [/mm] : (a,b) [mm] \in [/mm] R und (b,c) [mm] \in [/mm] R [mm] \Rightarrow [/mm] (a,c) [mm] \in [/mm] R.
   a - b = 7k
   b - c = 7k
   a - c = 7k


Ich befürchte allerdings, dass dies überhaupt kein Beweis ist, was mich dann auch direkt zu der Frage führt, wie ich das korrekt beweise? Mit Zahlen als Bsp. würde ich selbst ausschliessen, da ich so nur einen Wiederspruch beweisen würde.

( Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. )

Vielen Dank für eure Hilfe!


        
Bezug
Beweis Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Di 01.12.2009
Autor: fred97


> Die Relation [mm]\cong[/mm] ist auf [mm]\IZ[/mm] definiert durch [mm]a\cong[/mm] b ,
> falls a - b = 7k für ein [mm]k\in\IZ\sub[/mm] .
>  Zeigen Sie, dass [mm]\cong[/mm] eine Äquivalenzrelation ist.
>  Hallo Zusammen!
>  Da ich mich (noch) nicht so wirlich mit Beweisen auskenne,
> würde ich das Ganze so versuchen:
>  
> Bedingung für Äquivalenzrelation:
>  a.) reflexiv
>  b.) symmetrisch
>  c.) transitiv
>  
> zu a.) Die Relation ist Reflexiv, da
>  (a,a) [mm]\in[/mm] R : [mm]\forall[/mm] a [mm]\in\IZ[/mm]
>     a - a = 7k
>     a - a = 7 * 0 , wahr da 0 [mm]\in\IZ[/mm]
>  
> zu b.) Die Relation ist symmetrisch, da
>  [mm]\forall[/mm] (a,b) [mm]\in\IZ[/mm] : (a,b) [mm]\in[/mm] R [mm]\Rightarrow[/mm] (b,a) [mm]\in[/mm]
> R
>     a - b = 7k
>     b - a = 7 * (-k)
>  
> zu c.) Die Relation ist transitiv, da
>  [mm]\forall[/mm] a,b,c [mm]\in\IZ[/mm] : (a,b) [mm]\in[/mm] R und (b,c) [mm]\in[/mm] R
> [mm]\Rightarrow[/mm] (a,c) [mm]\in[/mm] R.
>     a - b = 7k
>     b - c = 7k
>     a - c = 7k
>  
>
> Ich befürchte allerdings, dass dies überhaupt kein Beweis
> ist, was mich dann auch direkt zu der Frage führt, wie ich
> das korrekt beweise?

Das war doch schon mal gar nicht schlecht. Schreib es so auf:

a) es gilt (a,a) $ [mm] \in [/mm] $ R  $ [mm] \forall [/mm] $ a $ [mm] \in\IZ [/mm] $, denn a-a = 7*0 und 0 [mm] \in \IZ [/mm]

b) Es gelte (a,b) $ [mm] \in [/mm] $ R , also gilt mit einem k [mm] \in \IZ: [/mm] a-b=7k. Dann ist b-a= 7(-k), folglich gilt (b,a) $ [mm] \in [/mm] $ R

c) Es gelte (a,b) $ [mm] \in [/mm] $ R und (b,c) $ [mm] \in [/mm] $ R . Dann gibt es k,m [mm] \in \IZ [/mm] mit

                   a-b = 7k und b-c = 7m

Dann ist  a-c = a-b+b-c = 7k+7m= 7(k+m). Daher: (a,c) $ [mm] \in [/mm] $ R



> Mit Zahlen als Bsp. würde ich selbst
> ausschliessen, da ich so nur einen Wiederspruch

Widerspruch







FRED


>  beweisen
> würde.
>
> ( Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. )
>  
> Vielen Dank für eure Hilfe!
>  


Bezug
                
Bezug
Beweis Äquivalenzrelation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Di 01.12.2009
Autor: saint

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]