www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Beweis Vektorraum
Beweis Vektorraum < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Vektorraum: Beweis.
Status: (Frage) beantwortet Status 
Datum: 20:37 Do 12.06.2008
Autor: tinakru

Aufgabe
Sei V ein euklidischer Vektorraum mit dim(V) >= 1 = n und f:V->V eine
reelle lineare Abbildung. Zeigen sie, dass es stets einen f-invarianten Untervektorraum U von V gibt mit dim(U) Element {1,2}.

Hinweis: Zeigen sie zunächst mit dem Fundamentalsatz der Algebra, dass man jedes reelle Polynom p mit n = deg(p) >= 1 in der Form
p(x) = [mm] a(x-b_1)*...* (x-b_r)*q_1(x)*...*q_s(x) [/mm] schreiben kann mit n = r+2s,
[mm] a,b_1..b_r, [/mm] und [mm] q_k [/mm]  Element den reellen Zahlen mit [mm] deg(q_k)= [/mm] 2.

Leider weiß ich überhaupt nicht wie ich das angehen sollte.
Kann mir evtl einer von euch helfen???

        
Bezug
Beweis Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:55 Fr 13.06.2008
Autor: angela.h.b.


> Sei V ein euklidischer Vektorraum mit dim(V) >= 1 = n und
> f:V->V eine
> reelle lineare Abbildung. Zeigen sie, dass es stets einen
> f-invarianten Untervektorraum U von V gibt mit dim(U)
> Element {1,2}.
>  
> Hinweis: Zeigen sie zunächst mit dem Fundamentalsatz der
> Algebra, dass man jedes reelle Polynom p mit n = deg(p) >=
> 1 in der Form
> p(x) = [mm]a(x-b_1)*...* (x-b_r)*q_1(x)*...*q_s(x)[/mm] schreiben
> kann mit n = r+2s,
>  [mm]a,b_1..b_r,[/mm] und [mm]q_k[/mm]  Element den reellen Zahlen mit
> [mm]deg(q_k)=[/mm] 2.
>  Leider weiß ich überhaupt nicht wie ich das angehen
> sollte.
>  Kann mir evtl einer von euch helfen???

Hallo,

zunächst eine Bitte: nimm doch bitte den Formeleditor, Eingabehilfen finden sich unterhalb des Eingabefensters.

Leider verrätst Du nicht, wo genau Deine Probleme liegen.

Mal ein Hinweis:

betrachte das charakteristische Polynom von f.

Entweder kann man einen Linearfaktor abspalten.
Dann ist der invariante Unterraum leicht zu finden.

Wenn man keinen Linearfaktor abspalten kann, ist ein quadratisches Polynom p(x) ohne Nullstelle ein Primteiler des charakteristischen Polynoms.
Betrachte nun den Kern von p(f).

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]