www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Beweis O-Notation
Beweis O-Notation < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis O-Notation: Behauputng beweisen/widerlegen
Status: (Frage) überfällig Status 
Datum: 19:51 Sa 02.06.2007
Autor: RalU

Aufgabe
Hallo, Leute!
Es geht um folgende Aufgabe (O-notation, Komplexitätsklassen):

Beweisen oder widerlegen Sie folgende Behauptung:
[mm] 5n^{2}+100n [/mm] = [mm] O(n^{2}) [/mm]

Ok, ich hab folgendermaßen angesetzt:

[mm] \exists [/mm] c > 0, [mm] \exists [/mm] no [mm] \in \IN \forall [/mm] n > no gilt:

f(n) <= c*g(n)


Beweisidee:
wähle c=5
wähle no=1

jetzt folgt

f(no) <= c* g(n0)
also
[mm] no^{2}+100*no<= 1*n^{2} [/mm]
101<=5 -> falsch


Damit wäre die Aussage widerlegt.
Aber eigentlich bin ich mir da nicht sicher, weil ich denke, die Aussage ist gültig. Aber wo liegt dann mein Fehler?

Mit freundlichen Grüßen,
Ralf

        
Bezug
Beweis O-Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 12.06.2007
Autor: HohesC

Ist die Frage noch aktuell oder hat sich das mittlerweile erledigt? Die Fälligkeit ist ja abgelaufen...

Bezug
        
Bezug
Beweis O-Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 Mi 13.06.2007
Autor: devilofdeath


> Hallo, Leute!
>  Es geht um folgende Aufgabe (O-notation,
> Komplexitätsklassen):
>  
> Beweisen oder widerlegen Sie folgende Behauptung:
>  [mm]5n^{2}+100n[/mm] = [mm]O(n^{2})[/mm]
>  Ok, ich hab folgendermaßen angesetzt:
>  
> [mm]\exists[/mm] c > 0, [mm]\exists[/mm] no [mm]\in \IN \forall[/mm] n > no gilt:
>  
> f(n) <= c*g(n)
>  
>
> Beweisidee:
>  wähle c=5
>  wähle no=1
>  
> jetzt folgt
>  
> f(no) <= c* g(n0)
>  also
>  [mm]no^{2}+100*no<= 1*n^{2}[/mm]
>  101<=5 -> falsch

>  
>
> Damit wäre die Aussage widerlegt.
>  Aber eigentlich bin ich mir da nicht sicher, weil ich
> denke, die Aussage ist gültig. Aber wo liegt dann mein
> Fehler?
>  
> Mit freundlichen Grüßen,
>  Ralf

falls es noch von Belangen ist:

Mein Lösungsvorschlag :

5* [mm] n^{2} [/mm] + 100*n [mm] \le c*n^{2} [/mm]         dividiere durch [mm] n^{2} [/mm]

5+ [mm] \bruch{100}{n} \le [/mm] c                    

man sieht hier, das der Term  [mm] \bruch{100}{n} [/mm] bei n [mm] \to \infty [/mm]  gegen 0 geht.

daraus folgt, c [mm] \ge [/mm] 105

nun wählen wir ein [mm] n_{0} [/mm] = 1 , c = 105 und setzen dies ein

5* [mm] 1^{2} [/mm] + 100*1 [mm] \le [/mm] 105*1  

105 [mm] \ge [/mm] 105  =>passt und gilt auch [mm] \forall [/mm] n [mm] \ge n_{0} [/mm]

lg




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]