www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Beweis Modulo-Rechnung
Beweis Modulo-Rechnung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Modulo-Rechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Sa 08.07.2006
Autor: dump_0

Aufgabe
Beweisen Sie: Seien $a$ und $b$ ganze Zahlen und sei $m$ eine positive ganze Zahl. Dann gilt: [mm]a \equiv b (mod m)[/mm] genau dann, wenn [mm]a mod m = b mod m[/mm] gilt.

Hallo!

Ich komme bei der obigen Aufgabe nicht so ganz zum Ziel, zu zeigen sind beide Richtungen das ist klar, jedoch komme ich bei der [mm]\Rightarrow[/mm]-Richtung nicht mehr weiter.

Klar ist, wenn [mm]a \equiv b (mod m)[/mm] gilt, dann gilt ebenso [mm](a - b) = k*m[/mm] bzw. lässt sich a darstellen als [mm]a = k*m + b[/mm]


Bei der [mm]\Leftarrow[/mm]-Richtung gilt wegen [mm]a mod m = b mod m[/mm], dass [mm]m | (a - b)[/mm] und somit auch [mm]a \equiv b (mod m)[/mm] gilt.

Wäre nett wenn ihr mir weiterhelfen könntet :)

Grüße

        
Bezug
Beweis Modulo-Rechnung: Fehler?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Sa 08.07.2006
Autor: Bastiane

Hallo!

Entweder habe ich gerade ein Brett vorm Kopf [bonk] oder deine Aussage macht nicht wirklich Sinn.

> Beweisen Sie: Seien [mm]a[/mm] und [mm]b[/mm] ganze Zahlen und sei [mm]m[/mm] eine
> positive ganze Zahl. Dann gilt: [mm]a \quiv b (mod m)[/mm] genau
> dann, wenn [mm]a mod m = b mod m[/mm] gilt.

Was soll denn "ab(mod m)" bedeuten? Und was sollte das "quiv", was nicht mal angezeigt wird, bedeuten?

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Beweis Modulo-Rechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:22 Sa 08.07.2006
Autor: dump_0

Sorry, hatte einige Syntaxfehler im Text, jetzt müsste bis auf ein paar Leerzeichen in den Formel (a mod b) alles stimmen :)

Bezug
        
Bezug
Beweis Modulo-Rechnung: WM
Status: (Antwort) fertig Status 
Datum: 07:32 Mo 10.07.2006
Autor: mathiash

Moin zusammen,

ok, gelte [mm] a\equiv b\:\mod\: [/mm] m,

also damit a=km+b, und es sei einfach mal b=k'm+b', dann ist

[mm] a\mod [/mm] m= b'  und

[mm] b\mod [/mm] m =b'.

Na ja, es war halt noch WM, da sei's verziehen... ;-)

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]