Beweis: Maximum und Minimum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien X und Y Teilmengen von [mm] \IR, [/mm] die jeweils ein Maximum und ein Minimum besitzen und für die X [mm] \cap [/mm] Y [mm] \not= \emptyset [/mm] gilt. Beweisen Sie oder widerlegen Sie durch Angabe eines Gegenbeispiels die folgenden Behauptungen:
a) Die Menge X [mm] \cap [/mm] Y besitzt ebenfalls ein Maximum und ein Minimum
b) Wenn X [mm] \cap [/mm] Y ebenfalls ein Maximum und ein Minimum besitzt, so gilt max X [mm] \cap [/mm] Y [mm] \le [/mm] min{maxX,maxY} und min [mm] X\cap [/mm] Y [mm] \ge [/mm] max{minX,minY}. |
Also dies ist eine Aufgabe, über der ich jetzt schon 2 Stunden sitze und nicht so richtig vorrankomme. Sie gehört zu einem Übungsblatt für meine Analysis-Vorlesung an der Uni.
Ich bin mir eigentlich schon ziemlich sicher, dass die Behauptung a falsch sein muss und b richtig. Das Probem ist nur, um für a ein Gegenbeispiel zu finden, müsste ich sozusagen etwas in der Menge X oder Y haben, das keinen festen "Grenzwert" besitzt. Muss ich nun etwas in der Menge haben, dass eher funktional ausgedrückt wird, also mit Buchstaben z.B. n oer x oder lässt sich das mit ganz normalen Zahlen oder vielleicht unendlichen wie [mm] \wurzel{2} [/mm] darstellen. Dies Problem beschäftigt mich im Prinzip bei a und b und wenn ich das wüsste, würde ich wohl auch allein weiterkommen. Ein Ansatz wäre also wirklich lieb, denn gern möchte ich daran auch noch ein bisschen rumbasteln. Bitte entschuldigt auch, falls ich mich mathematisch nicht ganz korrekt ausgedrückt habe, aber das fiel mir hier wirklich schwer.
Zu meinem Interesse an der Antwort: Also prinzipiell bin ich immer daran interessiert, aber da ich die Aufgabe ja lösen soll, wäre es lieb, falls ihr Zeit habt, einfach einen kurzen Tip zu geben. Vielleicht ist das ja dann schon die entscheidende Hilfe. Ich bleibe auch dran und wenn ich noch was habe, schreibe ich's natürlich rein.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:52 So 19.11.2006 | Autor: | luis52 |
Hallo Daniliesing,
Betrachte $X = [0,1) [mm] \cup [/mm] (3,5]$ und $Y=[2,4]$. Beide Mengen besitzen offenbar ein
Minimum und ein Maximum, jedoch besitzt $X [mm] \cap [/mm] Y = (3,4]$ kein Minimum.
hth
|
|
|
|
|
Danke für die schnelle Atwort!
Soll ich es jetzt also so sehen, dass die 0 Minimum von X ist und 5 Maximum von X. Bei Y ist 2 Minimum und 4 Maximum. In X sind alle Zahlen von 1 bis 5 enthalten und in Y von 2 bis 4. Mir ist die Schreibweise leider nicht ganz klar bzw. unbekannt. Ich würde aus der Schreibweise jetzt eigentlich denken, dass in X die 4 und in Y die 3 nicht enthalten sind. Warum ist dann also die Vereinigung von X und Y (3,4] und 4 ein Maximum aber 3 kein Minimum?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:38 So 19.11.2006 | Autor: | luis52 |
Ich habe Schwierigkeiten mit dem Mathe-Editor. Deswegen beschreibe ich
die Mengen.
$X$ besteht aus allen reellen Zahlen $x$, fuer die gilt $0 [mm] \le [/mm] x < 1$
oder $2 < x [mm] \le [/mm] 5 $. $Y$ besteht aus allen reellen Zahlen mit
[mm] $2\le y\le [/mm] 4$. Der Schnitt beider Mengen besteht aus allen Zahlen $z$
mit [mm] $2
|
|
|
|
|
Ah ja danke! Jetzt habe ich's verstanden. Da hätte ich aber wirklich allein drauf kommen können. Lag vielleicht daran, dass ich davor schon 6 andere Beweise gemacht habe. Pausen sollte ich vielleicht auch mal einlegen. Jetzt weiß ich glaube ich auch, wie ich bei b weiterrechnen kann. Danke!
|
|
|
|