www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beweis Jordan.UnGL mit Taylor
Beweis Jordan.UnGL mit Taylor < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Jordan.UnGL mit Taylor: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:25 So 26.11.2006
Autor: Mattes_01

Hallo!

Und zwar wollte ich mal fragen, ich soll die Jordansche Ungleichung beweisen, die da wäre:
[mm] \bruch{2}{\pi}\le\bruch{sin(x)}{x}\le1 [/mm]
für [mm] 0\le [/mm] x [mm] \le\bruch{\pi}{2} [/mm]


Also ich dachte mir ich könnte den Sinus durch die Potenzreihe ersetzen und dann kürzen, das sieht dann folgendermaßen aus:

[mm] \bruch{2}{\pi}\le [/mm] 1 - [mm] \bruch {x^{2}}{3!}+\bruch{x^{4}}{5!}-.....+R \le [/mm] 1


So jetzt wollte ich zeigen, dass unter gegeben Vorraussetzungen das Restglied R gegen -0 konvergiert, wenn ich das Restglied für die gesamte Taylorreihe auffasse, also dann da nur noch übrig habe:

1+R


Oder is der Ansatz total fasch?

Falls ihr ne bessere Idee habt immer her damit ;)


Gruss Mattes

        
Bezug
Beweis Jordan.UnGL mit Taylor: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 02.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]