www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Beweis Gedächtnislosigkeit
Beweis Gedächtnislosigkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Gedächtnislosigkeit: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 09:07 Do 20.02.2020
Autor: sancho1980

Hallo,

unter []diesem Link habe ich einen Beweis der Gedächtnislosigkeit der Exponentialverteilung gefunden:

P(X > x + y | X > y) = [mm] \bruch{P(X > x + y \cap X > y)}{P(X > y)} [/mm] = [mm] \bruch{P(X > x + y)}{P(X > y)} [/mm] = ... = P(X > x)


Meine Frage:

Woraus genau folgt, dass

P(X > x + y [mm] \cap [/mm] X > y) = P(X > x + y)

?

In Prosa heißt das doch, dass die Wahrscheinlichkeit [mm] P_1, [/mm] dass für eine zufällig ermittelte Zahl [mm] z_1 [/mm] > 0 auch [mm] z_1 [/mm] > x + y gilt, genauso groß ist, wie die Wahrscheinlichkeit [mm] P_2, [/mm] dass für eine zufällig ermittelte Zahl [mm] z_2 [/mm] > y auch [mm] z_2 [/mm] > x + y, oder?

Find ich irgendwie unintuitiv ...

Vielen Dank,

Martin

        
Bezug
Beweis Gedächtnislosigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Do 20.02.2020
Autor: Gonozal_IX

Hiho,

> Woraus genau folgt, dass
>  
> P(X > x + y [mm]\cap[/mm] X > y) = P(X > x + y)
>  
> ?
>  
> In Prosa heißt das doch, dass die Wahrscheinlichkeit [mm]P_1,[/mm]
> dass für eine zufällig ermittelte Zahl [mm]z_1[/mm] > 0 auch [mm]z_1[/mm] >
> x + y gilt, genauso groß ist, wie die Wahrscheinlichkeit
> [mm]P_2,[/mm] dass für eine zufällig ermittelte Zahl [mm]z_2[/mm] > y auch
> [mm]z_2[/mm] > x + y, oder?

Nein, das hat auch nix mit Wahrscheinlichkeiten zu tun, das ist simple Arithmetik.
Gilt für zwei Ausdrücke [mm] $A_1 [/mm] = [mm] A_2$ [/mm] so folgt sofort [mm] $P(A_1) [/mm] = [mm] P(A_2)$. [/mm]
Soweit hoffentlich klar.

Nun gilt aber: [mm] $\{ X > x+y, X > y\} [/mm] = [mm] \{X > x+y\}$ [/mm]

In Prosa bedeutet das: Für eine zufällige Zahl gilt [mm] $z_1 [/mm] > y$ und [mm] $z_1 [/mm] > x+y$ genau dann, wenn [mm] $z_1 [/mm] > x+y$

Oder anders ausgedrückt: Die Eigenschaft [mm] $z_1>y$ [/mm] ist auf der linken Seite offensichtlich überflüssig, wenn man zusätzlich noch die Eigenschaft [mm] $z_1 [/mm] > x + y$ fordert, da ersteres aus letzterem folgt.

Gruß,
Gono

Bezug
                
Bezug
Beweis Gedächtnislosigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 So 23.02.2020
Autor: HJKweseleit


> In Prosa bedeutet das: Für eine zufällige Zahl gilt [mm]z_1 > y[/mm]
> und [mm]z_1 > x+y[/mm] genau dann, wenn [mm]z_1 > x+y[/mm]
>  
> Oder anders ausgedrückt: Die Eigenschaft [mm]z_1>y[/mm] ist auf der
> linken Seite offensichtlich überflüssig, wenn man
> zusätzlich noch die Eigenschaft [mm]z_1 > x + y[/mm] fordert, da
> ersteres aus letzterem folgt.
>  
> Gruß,
>  Gono


Vorausgesetzt, dass x>0 ist. Gegenbeispiel:

x=-2
y=2
z=1

Dann ist zwar z>x+y=0, aber nicht z>y.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]