www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Beweis Ebene parallele Geraden
Beweis Ebene parallele Geraden < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Ebene parallele Geraden: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:33 Di 24.06.2008
Autor: Casandra

Aufgabe
Zeigen Sie, dass im [mm] \IR³ [/mm] eine zu einer Ebene parallele Gerade in der Ebene liegt der mit ihr einen leeren Durchschnitt hat.  

Das bedeutet ja, dass g [mm] \in [/mm] E oder g [mm] \cap [/mm] E = [mm] \emptyset. [/mm]

Ich denke, dass ich dies indirekt beweisen muss.
Ich weiß ja das der Normalenvektor der Ebene und der Richtungsvektor der Geraden senkrecht zu einander sind, wenn ich als Voraussetzung g [mm] \parallel [/mm] E wähle.  Und sie sind dann ja echt parallel, wenn g [mm] \not\in [/mm]  E.

E: [mm] \overrightarrow{x}= \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] und g: [mm] \overrightarrow{x}= \overrightarrow{q} [/mm] + t * [mm] \overrightarrow{u}. [/mm]

Und [mm] \overrightarrow{u} [/mm] lässt sich als Linearkombination von [mm] \overrightarrow{a} \overrightarrow{b} [/mm] darstellen:
[mm] \overrightarrow{u} =r_{1} [/mm] * [mm] \overrightarrow{a} [/mm] + [mm] s_{1} [/mm]  * [mm] \overrightarrow{b} [/mm]

Annahme: g [mm] \in [/mm] E:
[mm] \overrightarrow{q} [/mm] + t * [mm] \overrightarrow{u} [/mm] = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm]
dann erhalte ich
[mm] \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] - t * [mm] \overrightarrow{u} [/mm]

[mm] \Rightarrow \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s* [mm] \overrightarrow{b} [/mm] - t * [mm] r_{1} *\overrightarrow{a} [/mm] - t * [mm] s_{1} *\overrightarrow{b} [/mm]

[mm] \Rightarrow \overrightarrow{q} [/mm]  = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t * [mm] s_{1}) *\overrightarrow{b} [/mm]

dann kann ich Q in die Geradengleichung von g einsetzen
und erhalte

[mm] \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t  *  [mm] s_{1}) *\overrightarrow{b} [/mm] + t [mm] \overrightarrow{u} [/mm]

[mm] \Rightarrow \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + (r - t * [mm] r_{1}) [/mm] * [mm] \overrightarrow{a} [/mm] + (s - t  *  [mm] s_{1}) *\overrightarrow{b} [/mm] + t [mm] (r_{1} [/mm] * [mm] \overrightarrow{a} [/mm] + [mm] s_{1} [/mm]  * [mm] \overrightarrow{b}) [/mm]

[mm] \Rightarrow \overrightarrow{x} [/mm] = [mm] \overrightarrow{p} [/mm] + r * [mm] \overrightarrow{a} [/mm] + s * [mm] \overrightarrow{b} [/mm]

Dann liegt ja g in E. Kann man dies denn überhaupt so zeigen? Oder ist das vollkommener Blödsinn?
WEiß dann nicht weiter wie ich das andere zeigen kann.
Wäre nett wenn mir einer nen TIpp geben könnte.


Liebe Grüße Casandra


        
Bezug
Beweis Ebene parallele Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Di 24.06.2008
Autor: djmatey

Hallo,

also ehrlich gesagt frage ich mich nach dem Sinn dieser Aufgabe.
Wenn die Gerade nicht in der Ebene liegt, bedeutet "parallel" doch gerade, dass die Gerade die Ebene nicht schneidet.
Was gibt's da noch zu zeigen?
Oder habt Ihr den Begriff "parallel" in besonderer Weise definiert?

LG djmatey

Bezug
                
Bezug
Beweis Ebene parallele Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:00 Mi 25.06.2008
Autor: Casandra

Danke für deine Antwort!

Zur Parallelität haben wir folgendes:
Die Gerade g und die Ebene e heißen genau dann parallel, wenn sich der Richtungsvektor von g als Liniearkombination der Richtungsvektoren von e darstellen lässt.
Und wenn sie echt parallel sind, dass sie keinen Schnittpunkt haben.
Mehr haben wir nicht zur Parallelität von einer GEraden und einer Ebene.

Deswegen habe ich das so wie oben versucht.

Liebe Grüße

Bezug
                        
Bezug
Beweis Ebene parallele Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Mi 25.06.2008
Autor: djmatey


> Danke für deine Antwort!
>  
> Zur Parallelität haben wir folgendes:
>  Die Gerade g und die Ebene e heißen genau dann parallel,
> wenn sich der Richtungsvektor von g als Liniearkombination
> der Richtungsvektoren von e darstellen lässt.

genau, und dabei kann die Gerade noch in der Ebene liegen. Also liegt sie entweder in der Ebene oder:

> Und wenn sie echt parallel sind, dass sie keinen
> Schnittpunkt haben.

und das heißt doch gerade, dass g [mm] \cap [/mm] E = [mm] \emptyset [/mm]

> Mehr haben wir nicht zur Parallelität von einer GEraden und
> einer Ebene.
>
> Deswegen habe ich das so wie oben versucht.
>
> Liebe Grüße


LG djmatey


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]