www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis Bild f, Kern
Beweis Bild f, Kern < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Bild f, Kern: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:30 Mo 15.12.2008
Autor: seamus321

Aufgabe
es seien V, W endlich dimensionale K- Vektorräume, f:V--> W eine lineare Abbildung und [mm] X\subset [/mm] W ein Unterraumm. Zeigen Sie:

dim [mm] (f^{-1}(X)( [/mm] = dim [mm] (X\cap [/mm] Bild f) + dim (kern f)

Tipp: [mm] f(f^{-1}(X))= [/mm] X \ cap Bild f
betrachten Sie  f U--> W mit U [mm] :=f^{-1}(X) [/mm]

Hallo liebe Mathegemeinde,

den Beweis konnte ich mit Hilfe des Tipps lösen aber ich müsste jetzt eigentlich genau diesen Tipp noch beweisen und daran harpert es bei mir...

Meine Idee war das f (U)= X [mm] \cap [/mm] Bild f ist und dann zu zeigen das die linke seite eine Teilmenge der rechten ist und umgekehrt. leider harpert es schon daran wenn [mm] x\in [/mm] U  nicht in X ist wodurch ja dann diese Gleichung
[mm] f(f^{-1}(X))= [/mm] X \ cap Bild f nicht mehr stimmt.

Ich habe diesen Frage in keinen anderen Forum gepostet.

        
Bezug
Beweis Bild f, Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mo 15.12.2008
Autor: luis52

Moin  seamus321,

Zu zeigen ist:

[mm] $f(f^{-1}(X))= [/mm] X [mm] \cap \operatorname{Bild}(f)=X \cap [/mm] f(V)$

Ich will zunaechst einmal klaeren, wovon die Rede ist:

[mm] $f(V)=\{w\mid w\in W,\text{ es gibt ein } v\in V \text{ mit } f(v)=w\}$ [/mm]
[mm] $f^{-1}(X)=\{v\mid v\in V,\text{ es gibt ein } x\in X \text{ mit } f(v)=x\}$ [/mm]

[mm] "\supset": [/mm] Sei [mm] $y\in [/mm] X [mm] \cap [/mm] f(V)$. Dann gibt es ein [mm] $v_0\in [/mm] V$ mit
[mm] $y=f(v_0)\in [/mm] X$. Damit ist [mm] $v_0\in f^{-1}(X)$ [/mm] und folglich ist
[mm] $y=f(v_0)\in f(f^{-1}(X))$. [/mm]

[mm] "\subset": [/mm] Sei [mm] $y\in f(f^{-1}(X))$. [/mm] Es gibt ein
[mm] $v_0\in f^{-1}(X)\subset [/mm] V$ mit [mm] $y=f(v_0)$. [/mm] Fuer dieses [mm] $v_0$ [/mm] gibt es
[mm] $x_0\in [/mm] X$ mit [mm] $f(v_0)=x_0$. [/mm] Mithin ist [mm] $y\in [/mm] X$.


vg Luis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]