www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Beweis
Beweis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Frage
Status: (Frage) beantwortet Status 
Datum: 10:49 Di 23.08.2005
Autor: Jazzman

Hallo!

..ich habe eine Art Beweis durchzuführen bei dem ich nicht ganz weiterkomme!ich hoffe mir kann jemand weiterhelfen.
Es soll gezeigt werden, dass gilt:

[mm] \integral_{-\infty}^{+\infty} {f(y)(1-F_{x}(p,y))^{n} dy}=E[(1-Z)^{n}] [/mm]

wobei [mm] F_{x}(p,y)=Z [/mm] eine Zufallsvariable ist.

Ich denke mir das es auf jeden Fall etwas mit der Definition des Erwartungswertes zu tun haben muss, also
E[X]= [mm] \integral_ {-\infty}^{+ \infty} [/mm] {x*f(x) dx}
und dann muss man wahrscheinlich den Transformationssatz anwenden. Das ist mir aber irgendwie nicht so ganz klar!?
Bin dankbar für jede kleine Idee!!

        
Bezug
Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Di 23.08.2005
Autor: Julius

Hallo!

Solange du nicht genau sagst, in welchem Verhältnis $f$ (was soll das überhaupt sein?), [mm] $F_x(p,y)$ [/mm] (was machen hier $x$ und $p$, die sonst nicht vorkommen?) und $Z$ genau stehen, können wir nicht viel sagen.

Ist $f$ die Dichte von $Z$, dann gilt natürlich:

[mm] $E[(1-Z)^n] [/mm] = [mm] \int\limits_{-\infty}^{\infty} (1-y)^n f(y)\, [/mm] dy$.

Für weitere Hilfestellungen müsstest du präziser werden (am besten die Aufgabenstellung komplett abtippen oder verlinken).

Viele Grüße
Julius

Bezug
                
Bezug
Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:41 Di 23.08.2005
Autor: Jazzman

okay hab schon verstanden!

also f(y) soll hier die Dichte der Normalverteilung sein.

[mm] F_{x}(p,y)=\Phi( \bruch{\Phi^{-1}(p)- \wurzel{x}y}{ \wurzel{1-x}}) [/mm]

und [mm] \Phi [/mm] steht für die Verteilungsfunktion der Standardnormalverteilung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]