www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maschinenbau" - Bewegungsgleichung Mechanik
Bewegungsgleichung Mechanik < Maschinenbau < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewegungsgleichung Mechanik: Herleitung Bewegungsgleichung
Status: (Frage) beantwortet Status 
Datum: 09:20 Do 13.12.2012
Autor: gaussian

Aufgabe
Eine Masse m ist mit zwei Federn (Federsteifigkeit c1 und c2) und einem Dämpfer mit Dämpfungskonstante b mit der Umwelt verbunden.

Geg.: b, c1, c2, m, x(0)=0 dx/dt(0)=v0
Ges. Bewegungsgleichung der freien Schwingung (siehe Bild [Dateianhang nicht öffentlich]).

Hallo liebe Foristen,

ich versuche gerade die Bewegungsgleichung aus der Aufgabenstellung aufzustellen und bin etwas unsicher ob ich dies richtig gemacht habe.


Meine Lösung: (Anmerkung g ist die Erdbeschleunigung)

-m [mm] d^2 x/dt^2 [/mm] + m g - (k1+k2) x - b dx/dt x = 0
<-->
m [mm] d^2 x/dt^2 [/mm] + (k1+k2) x + b dx/dt x = m g.

Ist dies korrekt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpeg) [nicht öffentlich]
        
Bezug
Bewegungsgleichung Mechanik: Jetzt ist es ok!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:42 Do 13.12.2012
Autor: Diophant

Hallo gaussian und

[willkommenvh]

Jetzt ist es super mit der Bildgröße. Meine PM von eben enthielt noch einen Link zu einer Gratis-Software, mit der man u.a. Bilder verkleinern kann. Vielleicht kannst du sie gebrauchen?


Gruß, Diophant

Bezug
        
Bezug
Bewegungsgleichung Mechanik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Do 13.12.2012
Autor: chrisno

In der Skizze heißen die Federkonstanten [mm] $c_1$ [/mm] und [mm] $c_2$, [/mm] in der Gleichung [mm] $k_1$ [/mm] und [mm] $k_2$. [/mm]
Kannst Du diue Lage von [mm] $x_0$ [/mm] frei wählen? Das wäre die Chance, den Termn mg los zu werden.
Warum steht ein x beiu dem Däömpfungsterm?

Bezug
                
Bezug
Bewegungsgleichung Mechanik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:44 Do 13.12.2012
Autor: gaussian

Hallo,

Sorry, es soll natürlich c1 und c2 heißen.

Ja, x0 ist frei wählbar. Durch eine Koordinatentransformation kann man das mg los werden, das wurde bereits in der Übung gesagt.

Es steht dort ja ein b dx/dt, da die Dämpfung auch eingeht. Jedenfalls, in einem System wo [mm] c_1 [/mm] und b parallel liegen und die Masse somit nur an einer Seite aufgehangen ist, fließt der Däpmfungsterm mit dx/dt in die Bewegungsgleichung ein.
Ich lasse mich aber auch gerne überzeugen, dass die Bewegungsgleichung anders lauten muss. Dies ist ja gerade meine Frage.

Danke.

Bezug
                        
Bezug
Bewegungsgleichung Mechanik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:11 Do 13.12.2012
Autor: chrisno

Welches ist die Ruhelage des Systems? Da ein globales Koordinatensystem nicht gegeben ist, kannst Du da einfach x = 0 setzen.
Ich habe nicht nach dx/dt sondern dem Faktor x dahinter gefragt. Wo kommt der her?

Bezug
                                
Bezug
Bewegungsgleichung Mechanik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Do 13.12.2012
Autor: gaussian

Der Faktor x ist auch eher ein Lapsus, der Term soll heißen b dx/dt, also b mal die zeitliche Ableitung.

Bezug
                                        
Bezug
Bewegungsgleichung Mechanik: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Do 13.12.2012
Autor: chrisno

Dann schreib nun mal die aktuelle Version der Gleichung hin.

Bezug
                                                
Bezug
Bewegungsgleichung Mechanik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Do 13.12.2012
Autor: gaussian

Die Bewegungsgleichung lautet für das gefragte Feder-Masse-System:

m [mm] d^2x/dt^2 [/mm] + (k1+k2) x + b dx/dt = m g.

x ist frei wählbar. Daher muss dann auch gelten:

m [mm] d^2x^1/dt^2 [/mm] + (k1+k2) [mm] x^1 [/mm] + b [mm] dx^1/dt [/mm] = 0, wobei [mm] x^1 [/mm] aus x durch eine Koordinatentransformation hervor gegangen ist.

Bezug
                                                        
Bezug
Bewegungsgleichung Mechanik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Do 13.12.2012
Autor: leduart

Hallo
[mm] x^1 [/mm] ist unglücklich gewahlt. nimm gelch x=0 in der Ruhelage.
dann ist deine Dgl jetzt richtig .
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maschinenbau"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]