www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Betragsungleichung
Betragsungleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsungleichung: Lösen der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:49 Di 31.10.2006
Autor: cosmos321

Aufgabe
Ermitteln sie jeweils alle x für die gilt: |x+1|+|x-3|<6  

Hallo zusammen! Habe folgendes Problem mit der aufgabenstellung:

Kriege keinen Ansatz hin! Ich hoffe jemand kann mir weiterhelfen und Ansätze oder Lösungen nennen !

Danke im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Betragsungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Di 31.10.2006
Autor: Zaed

Hallo cosmos321,

solche Aufgaben löst man i.R. mit Hilfe von Fallunterscheidungen. Mal ein Beispiel für eine Fallunterscheidung in deiner Ungleichung:

Fall1: [mm] x \ge 3 [/mm]

Daraus ergibt sich doch nun der Fall, dass alle Betragsinhalte defenitiv positiv sind, und somit kannst du die Betragstriche auch wegfallen lassen...

Die anderen Fälle kannst du nun einmal selbst versuchen!

Hinweis: Wenn der Inhalt eines Betrages negativ wird, so kann man den Betrag auch wie folgt ausdrücken:

[mm]\forall x < 0: |x| = -(x) [/mm]

Ein Beispiel: [mm] |x + 5|: \forall x < -5: |x + 5| = -(x+5) = -x - 5 [/mm]

Ich hoffe, das hilft dir weiter und du kannst deine Aufgabe jetzt vollständig bearbeiten...

mfG Zaed

Bezug
                
Bezug
Betragsungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Di 31.10.2006
Autor: cosmos321

Hallo Zaed:

Wenn ich den Fall x<-1 betrachte, dann bekomme ich raus: -x-1-x+3<6,
daraus folgt: x>-2 ( meine untere Grenze!)

Was ist nun wenn ich den Fall : -1<x<3 betrachte: dann: (x+1)+[-(x-3)]<6
daraus folgt: 4<6  !  Was kann ich mit dieser Lösung anfangen??

Wenn ich es graphisch darstelle, dann bekomme ich als Lösung:
-2<x<4 als RICHTIGES Intervall heraus. Wie kann ich mit diesem 4<6 argumentieren????

Gruß

Bezug
                        
Bezug
Betragsungleichung: richtige Aussage
Status: (Antwort) fertig Status 
Datum: 22:33 Di 31.10.2006
Autor: chrisno


> Hallo Zaed:
>  
> Wenn ich den Fall x<-1 betrachte, dann bekomme ich raus:
> -x-1-x+3<6,
>  daraus folgt: x>-2 ( meine untere Grenze!)
>  
> Was ist nun wenn ich den Fall : -1<x<3 betrachte: dann:
> (x+1)+[-(x-3)]<6
>  daraus folgt: 4<6  !  Was kann ich mit dieser Lösung
> anfangen??

Das heißt doch, dass für -1<x<3 etwas richtiges nämlich 4<6 herauskommt. Also sind diese Zahlen Lösung der Ungleichung.

>  
> Wenn ich es graphisch darstelle, dann bekomme ich als
> Lösung:
>  -2<x<4 als RICHTIGES Intervall heraus. Wie kann ich mit
> diesem 4<6 argumentieren????
>  
> Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]