www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Betragsfunktion
Betragsfunktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 24.05.2009
Autor: Heureka89

Ich versuche rauszufinden, in welchen Punkten (x,y) [mm] \in \IR^2 [/mm]  f(x,y):=|xy| partielll bzw. total differenzierbar ist.
Also ich habe zuerst die partiellen Ableitungen gebildet:

[mm] df/dx=\begin{cases} |y|, & \mbox{für } x\ge0 \mbox{ } \\ -|y|, & \mbox{für } x<0 \mbox{ } \end{cases} [/mm]

[mm] df/dy=\begin{cases} |x|, & \mbox{für } y\ge0 \mbox{ } \\ -|x|, & \mbox{für } y<0 \mbox{ } \end{cases} [/mm]

Wie muss man weiter verfahren, um die geforderten Eigenschaften zu überprüfen?



        
Bezug
Betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 So 24.05.2009
Autor: abakus


> Ich versuche rauszufinden, in welchen Punkten (x,y) [mm]\in \IR^2[/mm]
>  f(x,y):=|xy| partielll bzw. total differenzierbar ist.

Hallo,
kommst du nicht günstiger, wenn du die Angelegenheit mit Polarkoordinaten regelst
[mm] x=r*cos\phi [/mm]
[mm] y=r*sin\phi [/mm]
[mm] xy=0,5r^2*sin(2\phi) [/mm]
Gruß Abakus

>  Also ich habe zuerst die partiellen Ableitungen gebildet:
>  
> [mm]df/dx=\begin{cases} |y|, & \mbox{für } x\ge0 \mbox{ } \\ -|y|, & \mbox{für } x<0 \mbox{ } \end{cases}[/mm]
>
> [mm]df/dy=\begin{cases} |x|, & \mbox{für } y\ge0 \mbox{ } \\ -|x|, & \mbox{für } y<0 \mbox{ } \end{cases}[/mm]
>  
> Wie muss man weiter verfahren, um die geforderten
> Eigenschaften zu überprüfen?
>  
>  


Bezug
                
Bezug
Betragsfunktion: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:43 Mo 25.05.2009
Autor: MaRaQ


>  Hallo,
>  kommst du nicht günstiger, wenn du die Angelegenheit mit
> Polarkoordinaten regelst
>  [mm]x=r*cos\phi[/mm]
>  [mm]y=r*sin\phi[/mm]
>  [mm]xy=0,5r^2*sin(2\phi)[/mm]
>  Gruß Abakus

Hallo Abakus,

irgendwie erschließt sich mir dieser Ansatz nicht so ganz. Inwieweit helfen mir die Polarkoordinaten, den Betrag unter Kontrolle zu bekommen?
Hier ist das Signum der Funktion doch immer noch abhängig von [mm]\phi[/mm], oder übersehe ich da etwas?

Ich wäre diese Aufgabe ähnlich wie Heureka89 angegangen und hätte den Betrag zunächst aufgelöst:

f(x,y)= |xy| = [mm] \begin{cases} xy, & \mbox{für } sign(x) = sign(y) \\ -xy, & \mbox{für } sign(x) \not= sign(y)\end{cases} [/mm]

Damit erhält man (wie oben):

[mm] f_x [/mm] (x,y) = |y| und [mm] f_y(x,y) [/mm] = |x|
(wenn ich mich jetzt nicht vertan habe)

Und die Betragsfunktionen sind zwar im Nullpunkt nicht stetig, aber existieren auf ganz [mm]\IR[/mm], weshalb f partiell differenzierbar ist.

---

Bei der totalen Differenzierbarkeit verstehe ich bislang allerdings leider nur Bahnhof.

Ich muss hier, wenn ich die Definition richtig verstehe einen Vektor [mm]a \in \IR^2[/mm] und eine vektorwertige Funktion [mm]\delta[/mm] konstruieren, so dass in der Nähe eines beliebigen Punktes [mm]x_0 \in \IR[/mm] gilt:
[mm](i) f(x) = f(x_0) + a*(x-x_0) + \delta(x) * (x-x_0)[/mm]
[mm](ii) \limes_{x\rightarrow x_0} \delta(x) = 0[/mm]

Nur wie packe ich das an der Stelle an?

Gruß, Tobias

Bezug
                        
Bezug
Betragsfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Do 28.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]