www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Betragsfunktion
Betragsfunktion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 So 27.08.2006
Autor: lauravr

Hallo,

ich habe eine kleine Frage.


Für die Betragsfunktion f(x) = | x - [mm] \bruch{x²}{4} [/mm] | muss man ja für x>0 und x<0 unterscheiden.

Für x>0 gilt ja  f(x) = x - [mm] \bruch{x²}{4} [/mm]

Und für x<0 ?
Gilt da f(x) = - x - [mm] \bruch{(-x)²}{4} [/mm] oder f(x) = - ( x - [mm] \bruch{x²}{4} [/mm] ) ??


Lg Laura

        
Bezug
Betragsfunktion: gesamten Term betrachten
Status: (Antwort) fertig Status 
Datum: 16:30 So 27.08.2006
Autor: Loddar

Hallo Laura!



> Für die Betragsfunktion f(x) = | x - [mm]\bruch{x²}{4}[/mm] | muss
> man ja für x>0 und x<0 unterscheiden.

Das stimmt so nicht ganz ... Du musst unterscheiden zwischen $... \ [mm] \ge [/mm] \ 0$ bzw. $... \ < \ 0$ von dem ganzen Term, der zwischen den Betragsstrichen steht; also: $x - [mm] \bruch{x^2}{4} [/mm] \ [mm] \ge [/mm] \ 0$ oder $x - [mm] \bruch{x^2}{4} [/mm] \ < \ 0$ .

Damit gilt dann:

[mm]{f(x) \ = \ \left| x - \bruch{x^2}{4}\right| \ = \ \begin{cases} +\left(x - \bruch{x^2}{4}\right), & \mbox{für } x - \bruch{x^2}{4} \ \ge \ 0 \mbox{ } \\ -\left(x - \bruch{x^2}{4}\right), & \mbox{für } x - \bruch{x^2}{4} \ < \ 0 \mbox{ } \end{cases}}[/mm]


Wann gilt nun $x - [mm] \bruch{x^2}{4} [/mm] \ [mm] \ge [/mm] \ 0$ oder $x - [mm] \bruch{x^2}{4} [/mm] \ < \ 0$ ?


Gruß
Loddar


Bezug
                
Bezug
Betragsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 So 27.08.2006
Autor: lauravr


> Wann gilt nun $x - [mm] \bruch{x^2}{4} [/mm] \ [mm] \ge [/mm] \ 0$ oder $x - [mm] \bruch{x^2}{4} [/mm] \ < \ 0$ ?


$x - [mm] \bruch{x^2}{4} [/mm] \ [mm] \ge [/mm] \ 0$ gilt wenn 4 [mm] \ge [/mm] x und $x - [mm] \bruch{x^2}{4} [/mm] \ < \ 0$ wenn 4 < x . (Oder?)





Bezug
                        
Bezug
Betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 27.08.2006
Autor: Zwerglein

Hi, lauravr,

> > Wann gilt nun [mm]x - \bruch{x^2}{4} \ \ge \ 0[/mm] oder [mm]x - \bruch{x^2}{4} \ < \ 0[/mm]
> ?
>  
>
> [mm]x - \bruch{x^2}{4} \ \ge \ 0[/mm] gilt wenn 4 [mm]\ge[/mm] x und [mm]x - \bruch{x^2}{4} \ < \ 0[/mm]
> wenn 4 < x . (Oder?)

Nein!

Am besten, Du stellst Dir die linke Seite als Funktionsterm einer Parabel vor.

Diese Parabel

- ist nach UNTEN geöffnet (denn beim [mm] x^{2} [/mm] steht ein Minuszeichen) und

- schneidet die x-Achse bei x=0 und bei x=4 (was Du leicht rauskriegst, wenn Du x ausklammerst!)

So.
Und [mm] "\ge [/mm] 0" heißt soviel wie "oberhalb der x-Achse" (einschließlich der Nullstellen)
bzw. "< 0" heißt "unterhalb der x-Achse" (ohne die Nullstellen).

Wenn Du die oben beschriebene Parabel mal zeichnest (grobe Skizze reicht!), so siehst Du:
Die liegt zwischen den beiden Nullstellen oberhalb und rechts und links davon unterhalb.

Daher gilt:
x - [mm] \bruch{x^2}{4} \ge [/mm]  0    [mm] \gdw [/mm]   0 [mm] \le [/mm] x [mm] \le [/mm] 4

bzw.
x - [mm] \bruch{x^2}{4} [/mm]  < 0    [mm] \gdw [/mm]   x < 0 [mm] \vee [/mm]  x > 4

mfG!
Zwerglein


Bezug
        
Bezug
Betragsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 So 27.08.2006
Autor: Palin

Nun der Betrag macht nichts anderes als den Term der Zwischen den Betragsstrichen steht positiv, du must also eine Fall unterscheidung machen wenn der Term negativ wir .
Und ihn dann so umformen das der Term "positiv" ist.

Also für x<0 kannst dur f(x) | x+ [mm] x^2/4 [/mm] | Betrachten und davon ausgehen das in dem umgestelten Term alle x>0 sind.

Hier soltest du noch drauf achten das für Große x der Term wider negativ wird und umgestelt werden muß.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]