www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Betafunktion Lebesgue-Integral
Betafunktion Lebesgue-Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betafunktion Lebesgue-Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Do 02.01.2014
Autor: catastropeia

Aufgabe
Beweisen Sie, dass $ B(x,y) := [mm] \integral_{0}^{1}{t^{x-1}(1-t)^{y-1}dt} [/mm] $ als Lebesgue-Integral wohldefiniert ist.


Reicht es hier aus, das Integral einfach auszurechnen? Das würde mit (x-1)-mal partieller Integration

$ B(x,y) $:= [mm] \integral_{0}^{1}{t^{x-1}(1-t)^{y-1}dt} [/mm] = [mm] [t^{x-1}(-1)\bruch{(1-t)^y}{y}]_{0}^{1} [/mm] + [mm] \bruch{x-1}{y}\integral_{0}^{1}{t^{x-2}(1-t)^ydt} [/mm] = [mm] \bruch{x-1}{y}\integral_{0}^{1}{t^{x-2}(1-t)^ydt} [/mm] = ... = [mm] (-1)^{x-1}\bruch{(x-1)!(y-1)!}{(y+x-2)!}\integral_{0}^{1}{(1-t)^{x+y-2}dt} [/mm] = [mm] (-1)^{x}\bruch{(x-1)!(y-1)!}{(y+x-2)!}\integral_{0}^{1}{s^{x+y-2}ds} [/mm] = [mm] (-1)^{x}\bruch{(x-1)!(y-1)!}{(y+x-1)!} [/mm]

ergeben. Da das kleiner als [mm] \infty [/mm] ist => Integral ist wohldefiniert?! Aber wo spielt dann Lebesgue mit rein?

danke, lg

        
Bezug
Betafunktion Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:18 Do 02.01.2014
Autor: Leopold_Gast

Rechenkatastrophe!

[mm](u+v)^{\alpha} \neq u^{\alpha} + v^{\alpha}[/mm]

Bezug
                
Bezug
Betafunktion Lebesgue-Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 Do 02.01.2014
Autor: catastropeia

aarr wie peinlich^^..., aber egal, ich habs korrigiert. Die Frage bleibt aber trotzdem gleich...

Bezug
                        
Bezug
Betafunktion Lebesgue-Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Do 02.01.2014
Autor: Gonozal_IX

Hiho,

partielle Integration ist eine nette Idee, es gilt hier aber sicherlich mindestens x>0, wenn nicht sogar [mm] $x\in\IR$, [/mm] so dass du mit deiner partiellen Integration wohl nicht zum Ziel kommen wirst.....

Ausrechnen wäre ein guter Weg, denn wenn das Integral im Riemannschen Sinne existiert, dann auch im Lebesgueschen Sinne.
Vermutlich ist aber auch das nicht notwendig, wenn du geeignet abschätzt.

Gruß
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]