www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Bestimmung von Nullstellen
Bestimmung von Nullstellen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von Nullstellen: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:00 Fr 30.03.2012
Autor: Chrism91

Aufgabe
Gegeben ist [mm] q(z)=z^{3}+(-1-5i)z^{2}+(-6+5i)z+6 [/mm]
Welche der folgenden Aussagen sind wahr, welche falsch? Begruenden Sie jeweils ihre Entscheidung:
1) q hat mindestens eine reelle Nullstelle.
2) q hat nur reelle Nullstellen.
3) q hat mindestens eine echt komplexe Nullstelle.
4) q hat nur echt komplexe Nullstellen.

Also alles was ich sehe, sind maximal 3 moegliche Nullstellen da es ein Polynom 3. Grades ist. Dies ist eine Klausuraufgabe gewesen.
Gibt es Verfahren wie ich leicht herausfinden kann, um was fuer Nullstellen es sich handelt? Ohne dabei das Polynom in seine Linearfaktoren zu zerlegen?
Gruesse,
chrism
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung von Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Fr 30.03.2012
Autor: fred97


> Gegeben ist [mm]q(z)=z^{3}+(-1-5i)z^{2}+(-6+5i)z+6[/mm]
>  Welche der folgenden Aussagen sind wahr, welche falsch?
> Begruenden Sie jeweils ihre Entscheidung:
>  1) q hat mindestens eine reelle Nullstelle.
>  2) q hat nur reelle Nullstellen.
>  3) q hat mindestens eine echt komplexe Nullstelle.
>  4) q hat nur echt komplexe Nullstellen.
>  Also alles was ich sehe, sind maximal 3 moegliche
> Nullstellen da es ein Polynom 3. Grades ist. Dies ist eine
> Klausuraufgabe gewesen.
> Gibt es Verfahren wie ich leicht herausfinden kann, um was
> fuer Nullstellen es sich handelt? Ohne dabei das Polynom in
> seine Linearfaktoren zu zerlegen?


ich meine, es springt einem doch ins Auge, dass z=1 eine Nullstelle ist.

Was kannst Du dann über 1) und 4) sagen ?

Zu 2): Nimm mal an, q hätte nur reelle Nullstellen, dann gibt es also [mm] r_1,r_2 \in \IR [/mm] mit

             [mm] $q(z)=(z-1)(z-r_1)*(z-r_2)$ [/mm]

Wenn Du das ausmultiplizierst, was kannst Du dann über die Koeeffizienten von q sagen ?


Mit diesen Informatieonen mach Dich über 3) her.

FRED

>  Gruesse,
> chrism
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]