www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Bestimmung von Funktionen
Bestimmung von Funktionen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von Funktionen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:38 Mi 19.09.2007
Autor: Syreah

Hallo zusammen,
da ich aus Krankheitsgründen zwei Wochen nicht am Matheunterricht teilnehmen konnte, tu ich mich etwas schwer mit den Hausaufgaben, da ich die neuen Sachen versucht habe, alleine aufzuarbeiten.

Es geht um folgende Aufgabe:
1) Bedingungen für eine Funktion formulieren
Eine ganzrationale Funktion f ist so zu bestimmen, dass ihr Graph einen Übergangsbogen zwischen zwei Halbgeraden bildet. Der Grad von f soll möglichst klein sein.
a) Der Graph von f soll an den Anschlussstellen keinen "Knick" aufweisen. Präzisiere diese Forderung mathematisch und bestimme dann f(x).
b) f soll an den Anschlussstellen in der ersten und in der zweiten Ableitung mit den Halbgeraden übereinstimmen. Bestimme f(x).
c) Stelle dir vor, die Halbgeraden beschreiben Straßen. Warum ist die Lösung von b) sinnvoller als Übergangebogen als die Lösung von a)?

Zeichnung, die angegeben ist:
http://img338.imageshack.us/img338/5558/unbenanntho5.png


Ich weiß jetzt gar nicht, wie ich an diese Aufgabe rangehen soll. Wie genau muss ich nun anfangen, um die Aufgabe zu lösen? :/ Ich bräuchte einen Denkanstoß *g*


Danke im Voraus! :-)

        
Bezug
Bestimmung von Funktionen: Tipp
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 19.09.2007
Autor: subclasser

Hallo!

Ich helfe dir mal ein wenig bei dem ersten Aufgabenteil. Keinen Knick bedeutet wohl, dass die erste Ableitung an den entsprechenden Stellen übereinstimmen. Warum? Zeichne dir eine Funktion, die sich aus zwei Teilen zusammensetzt und einen Knick hat. Dann betrachte mal die links- und rechtsseitige Ableitung, also die Ableitung der beiden Einzelfunktionen an der Knickstelle.

Zurück zur Aufgabe. Du kannst also folgende Bedingungen für die gesuchte Funktion f aufstellen:
f(1) = ?, f(3) = ?, f'(1) = ?, f'(3) = ?
Die Werte kannst du jetzt hoffentlich selber ergänzen? Nun musst du dir noch überlegen, bei welchem Grad das Gleichungssystem potentiell eindeutig lösbar ist.

Versuch's einmal :-)

Gruß!

Bezug
                
Bezug
Bestimmung von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Mi 19.09.2007
Autor: Syreah

Okay, das mit den Bedingungen kann ich voll und ganz nachvollziehen. Das hatte ich mir auch versucht, selbst beizubringen mit Aufgaben, wo das einem noch vorgegeben ist. Aber mit was rechne ich nun die Werte aus? Ich weiß, wahrscheinlich ist es total simpel und ich habe ein Brett vorm Kopf :-/

Bezug
                        
Bezug
Bestimmung von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Mi 19.09.2007
Autor: Blech

f(1)=2, f'(1)=1, f(3)=4, f'(3)=0

D.h. wir haben 4 Gleichungen, also brauchen wir 4 Unbekannte:

[mm]f(x)= ax^3+bx^2+cx+d[/mm]
[mm]\Rightarrow f'(x)= 3ax^2 + 2bx +c[/mm]

Jetzt setzen wir die Bedingungen ein:
[mm]f(1)=a+b+c+d=2[/mm]
[mm]f(3)=27a+9b+3c+d=4[/mm]
[mm]f'(1)=3a+2b+c=1[/mm]
[mm]f'(3)=27a+6b+c=0[/mm]

Und erhalten damit das Gleichungssystem:
[mm]\begin{array}{rrrrrrrrr} 1a&+&1b&+&1c&+&1d&=&2\\ 27a&+&9b&+&3c&+&1d&=&4\\ 3a&+&2b&+&1c&+&0d&=&1\\ 27a&+&6b&+&1c&+&0d&=&0\\ \end{array}[/mm]

Das mußt Du jetzt nur noch lösen =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]