www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Bestimmung v. Parabelgleichung
Bestimmung v. Parabelgleichung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung v. Parabelgleichung: Parabelgleichungen
Status: (Frage) beantwortet Status 
Datum: 13:03 Sa 02.11.2013
Autor: Asura

Aufgabe
Die Parabel y = 1/2 * [mm] x^{2} [/mm] - 4x + 10 wird im Koordinatensystem um 2 Einheiten nach rechts und um 3 Einheiten nach unten verschoben. Anschließend wird sie um ihren Scheitelpunkt um 180 Grad gedreht und so gestreckt, dass sie durch den Punkt P(4/-9) verläuft. Wie lautet die Gleichung der entstandenen Parabel in Normalform?

Guten Tag,
und zwar komme ich bei der oben gestellten Aufgabe nicht weiter.
Es geht um darum, wie ich die Gleichung ermitteln kann, wenn ich den Punkt nun gegeben habe.
Ich habe bis jetzt das so gerechnet:

[]Zum Bild auf: "http://epvpimg.com/wMyHg"

Es wäre super, wenn Sie mir die nächsten Schritte erklären könnten.

MfG
Asura

        
Bezug
Bestimmung v. Parabelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Sa 02.11.2013
Autor: M.Rex

Hallo

> Die Parabel y = 1/2 * [mm]x^{2}[/mm] - 4x + 10 wird im
> Koordinatensystem um 2 Einheiten nach rechts und um 3
> Einheiten nach unten verschoben. Anschließend wird sie um
> ihren Scheitelpunkt um 180 Grad gedreht und so gestreckt,
> dass sie durch den Punkt P(4/-9) verläuft.
> Wie lautet die
> Gleichung der entstandenen Parabel in Normalform?
> Guten Tag,
> und zwar komme ich bei der oben gestellten Aufgabe nicht
> weiter.
> Es geht um darum, wie ich die Gleichung ermitteln kann,
> wenn ich den Punkt nun gegeben habe.
> Ich habe bis jetzt das so gerechnet:

>

> []Zum Bild auf: "http://epvpimg.com/wMyHg"

Die Umformung von

[mm] f(x)=\frac{1}{2}x^{2}-4x+10 [/mm] zu [mm] f(x)=\frac{1}{2}(x-4)^{2}+2 [/mm] ist korrekt, damit dann auch [mm] S_{f}(4|2) [/mm]

>

> Es wäre super, wenn Sie mir die nächsten Schritte
> erklären könnten.

Die neue Parabel hat also den Scheitel S(4|2) und einen unbekannten Streckfaktor a, also hast du:
[mm] g(x)=a(x-4)^{2}+2 [/mm]

Nun verschieben wir [mm] (x-4)^{2}+2 [/mm] weiter:
[mm] a(x-4)^{2}+2 [/mm]
um drei Einheiten nach unten geschoben:
[mm] \left(a(x-4)^{2}+2\right)-3 [/mm]
[mm] =a(x-4)^{2}-1 [/mm]
Nun 2 Einheiten nach rechts
[mm] a((x-2)-4)^{2}-1 [/mm]
[mm] =a(x-6)^{2}-1 [/mm]
Nun am Scheitel um 180° Spiegeln
[mm] =-a(x-6)^{2}-1 [/mm]
Nun soll sie wiederum gestreckt/gestaucht werden, so dass P(4|-9) auf g liegt, also muss gelten

g(4)=-9, also [mm] -a\cdot(4-6)^{2}-1=-9 [/mm]

Daraus kannst du nun a bestimmen, und damit dann die neue Parabel [mm] g(x)=-a(x-6)^{2}-1 [/mm]

In der Tat gilt aber:
[mm] -a\cdot(4-6)^{2}-1=-9 [/mm]
[mm] \Leftrigtarrow-a\cdot(-2)^{2}=-8 [/mm]
[mm] \Leftrigtarrow4a=8 [/mm]
[mm] \Leftrigtarrow2=a [/mm]

Also hast du

[mm] g(x)=-2(x-6)^{2}-1 [/mm]

Wenn du das in die Normalform umwandeln willst, musst du nur die binomische Formel lösen, und den Term dann zusammenfassen.

> MfG
> Asura

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]