www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Bestimmung invarianter UR
Bestimmung invarianter UR < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung invarianter UR: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 04.06.2012
Autor: sarah_l92

Aufgabe
Bestimmen Sie die Invarianten Teilräume aus einer Zerlegung des Minimalpolynoms der folgenden Matrix A:
A= [mm] \pmat{1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 } [/mm]

hallo,

also die Bestimmung der Eigenwerte, der Eigenvektoren und des charakteristischen bzw. Minimalpolynoms (hier das gleiche) war nicht schwer.
EW: [mm] x_{1} [/mm] = 0  -->EV: (1,-1,0,0)
       [mm] x_{2} [/mm] = 1  -->EV: (0,0,1,-1)
Minimalpolynom: [mm] x^{2}(x^{2} [/mm] -2x +1)

Mir ist klar dass ich folgende Invariante Teilräume habe:
[mm] U_{0} [/mm] = {0}
[mm] U_{1}= [/mm] <(1,-1,0,0)>
[mm] U_{2}= [/mm] <(0,0,1,-1)>

Erste Frage: Ein invarianter Teilraum ist ja immer der ganze Raum. Mein Vektorraum hat die Dimension 4, meine Matrix den Rang 3, hab ich dann also einen Invarianten Unterraum [mm] U4=\IR^{3} [/mm] oder [mm] U4=\IR^{4} [/mm] ?? Ich komm mir grad selbst blöd vor bei der Frage, ich würde sagen [mm] U4=\IR^{3}, [/mm] aber ich bin mir nicht 100% sicher :)

Mein Hauptroblem ist nun aber die Bestimmung der zweidimensionalen Unterräume. Ich habe schon einige Beispiele gelesen, meist einfache mit 2x2 Matrizen, das hilft mir aber nicht weiter. Auch Beispiele in denen das Minimalpolynom schön in Linearfaktoren zerfällt, das ist aber leider auch nicht der Fall.

Ich hoffe ihr könnt mir weiterhelfen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bestimmung invarianter UR: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Di 05.06.2012
Autor: fred97


> Bestimmen Sie die Invarianten Teilräume aus einer
> Zerlegung des Minimalpolynoms der folgenden Matrix A:
>  A= [mm]\pmat{1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ -2 & -2 & 2 & 1 \\ 1 & 1 & -1 & 0 }[/mm]
>  
> hallo,
>  
> also die Bestimmung der Eigenwerte, der Eigenvektoren und
> des charakteristischen bzw. Minimalpolynoms (hier das
> gleiche) war nicht schwer.
>  EW: [mm]x_{1}[/mm] = 0  -->EV: (1,-1,0,0)
>         [mm]x_{2}[/mm] = 1  -->EV: (0,0,1,-1)
>  Minimalpolynom: [mm]x^{2}(x^{2}[/mm] -2x +1)

Ich habs nicht nachgerechnet. Wenns stimmt so ist

          [mm] \IR^4=Kern(A^2) \oplus Kern((A-I)^2) [/mm]


FRED

>  
> Mir ist klar dass ich folgende Invariante Teilräume habe:
>  [mm]U_{0}[/mm] = {0}
>  [mm]U_{1}=[/mm] <(1,-1,0,0)>
>  [mm]U_{2}=[/mm] <(0,0,1,-1)>
>  
> Erste Frage: Ein invarianter Teilraum ist ja immer der
> ganze Raum. Mein Vektorraum hat die Dimension 4, meine
> Matrix den Rang 3, hab ich dann also einen Invarianten
> Unterraum [mm]U4=\IR^{3}[/mm] oder [mm]U4=\IR^{4}[/mm] ?? Ich komm mir grad
> selbst blöd vor bei der Frage, ich würde sagen
> [mm]U4=\IR^{3},[/mm] aber ich bin mir nicht 100% sicher :)
>  
> Mein Hauptroblem ist nun aber die Bestimmung der
> zweidimensionalen Unterräume. Ich habe schon einige
> Beispiele gelesen, meist einfache mit 2x2 Matrizen, das
> hilft mir aber nicht weiter. Auch Beispiele in denen das
> Minimalpolynom schön in Linearfaktoren zerfällt, das ist
> aber leider auch nicht der Fall.
>  
> Ich hoffe ihr könnt mir weiterhelfen
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]