www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Bestimmung affiner Unterraum
Bestimmung affiner Unterraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung affiner Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Di 27.05.2008
Autor: matthias79

Aufgabe
Wir betrachten die durch die Gleichung
x1 − 3x2 + x4 = 2
bzw. durch
x2 − x3 + x4 = 1
gegebenen Hyperräume L1 und L2 des [mm] \IR^{4}. [/mm]
Stellen Sie den affinen Unterraum L := L1 ∩ L2 von [mm] \IR^{4} [/mm]  in der Form y + U
durch die Angabe eines y ∈ [mm] \IR^{4} [/mm]
und einer Basis des Unterraums U dar.

Ich hätte folgende Lösung, bin mir aber nicht sicher ob sie richtig ist.

Gleichsetzen von L1 und L2

L1 ∩ L2 : x1 - 3x2 + x4 -2 = x2 - x3 + x4 - 1

L = x1 -4x2 +x3 = 1

=> n = [mm] \vektor{1 \\ -4 \\ 1 \\ 0} [/mm]

dann LGS aufstellen

1 -4 1 0 | 0
B  F F F

daraus ergibt sich dann y = [mm] \vektor{1 \\ 0 \\ 0 \\ 0} [/mm] und
u1 = [mm] \vektor{1 \\ 0 \\ -1 \\ 0};u2 [/mm] = [mm] \vektor{-4 \\ -1 \\ 0 \\ 0};u3 [/mm] = [mm] \vektor{0 \\ 0 \\ 0 \\ -1} [/mm]

somit der affinen Raum L = y + < u1, u2, u3 >

Vielen Dank im voraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung affiner Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Mi 28.05.2008
Autor: fred97

Deine Lösung ist nicht richtig !

Du mußt das LGS

x1 − 3x2 + x4 = 2

x2 − x3 + x4 = 1

lösen.  Die Lösungsmenge liefert Dir genau das, was Du suchst: y+U

Bei deiner "Lösung " ist (1,0,0,0) im schnitt von L1 und L2. Das ist aber nicht der Fall,wie Du leicht nachrechnen kannst.

FRED

Bezug
                
Bezug
Bestimmung affiner Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Mi 28.05.2008
Autor: matthias79


> Du mußt das LGS
>  
> x1 − 3x2 + x4 = 2
>  
> x2 − x3 + x4 = 1

>

> lösen

ach so klar muss in beiden aufgehen habe nun folgende Lösung

1 0 -3 4 | 5
0 1 -1 1 | 1
B B  F F

=> y = [mm] \vektor{5 \\ 1 \\ 0 \\ 0 } [/mm] und
u1 =  [mm] \vektor{4 \\ 1 \\ 0 \\ -1 } [/mm] ;  u2 =  [mm] \vektor{-3 \\ -1 \\ -1 \\ 0 } [/mm]

somit L = y + <u1, u2>

Für mich nochmal zum Verständnis. Der Vektor y ist der Aufpunkt. u1 und u2 legen eine Ebene fest? Kann man das so sagen.
Wenn ich nun zu u1 und u2 einen normalvektor bestimmen möchte, dann stell ich ein LGS mit den zwei Vektoren u1, u2 auf und setz es gleich 0 oder?

Danke!



Bezug
                        
Bezug
Bestimmung affiner Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Do 29.05.2008
Autor: angela.h.b.


> > Du mußt das LGS
>  >  
> > x1 − 3x2 + x4 = 2
>  >  
> > x2 − x3 + x4 = 1
> >
>  > lösen

>  
> ach so klar muss in beiden aufgehen habe nun folgende
> Lösung
>  
> 1 0 -3 4 | 5
>  0 1 -1 1 | 1
>  B B  F F
>  
> => y = [mm]\vektor{5 \\ 1 \\ 0 \\ 0 }[/mm] und
>  u1 =  [mm]\vektor{4 \\ 1 \\ 0 \\ -1 }[/mm] ;  u2 =  [mm]\vektor{-3 \\ -1 \\ -1 \\ 0 }[/mm]
>
> somit L = y + <u1, u2>
>  
> Für mich nochmal zum Verständnis. Der Vektor y ist der
> Aufpunkt. u1 und u2 legen eine Ebene fest? Kann man das so
> sagen.

Hallo,

ja, so ist es.
[mm] u_1 [/mm] und [mm] u_2 [/mm] sind die Richtungsvektoren der Ebene.

>  Wenn ich nun zu u1 und u2 einen normalvektor bestimmen
> möchte, dann stell ich ein LGS mit den zwei Vektoren u1, u2
> auf und setz es gleich 0 oder?

Ob man hier mit "ja" oder "nein" antworten muß, hängt ganz davon ab, was Du unter "dann stell ich ein LGS mit den zwei Vektoren u1, u2 auf und setz es gleich 0" verstehst.
Dahinter könnte sich allerlei verbergen...

Wofür willst Du einen zu u1, u2 senkrechten Vektor haben?

Gruß v. Angela


Bezug
                                
Bezug
Bestimmung affiner Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 Do 29.05.2008
Autor: matthias79

Unser Professor frägt gerne nach einen Normalenvektor

LGS würde ich so aufstellen und dann lösen


4  1 0 -1 | 0
-3 -1 -1 0 | 0

also

1 0 -1 -1 | 0
0 1  4  3 | 0

=> n1 = [mm] \vektor{-1 \\ 3 \\ 0 \\ -1} [/mm] n2 = [mm] \vektor{-1 \\ 4 \\ -1 \\ 0} [/mm]
müsste stimmen oder?

Danke!

Bezug
                                        
Bezug
Bestimmung affiner Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:48 Do 29.05.2008
Autor: angela.h.b.


> Unser Professor frägt gerne nach einen Normalenvektor
>  
> LGS würde ich so aufstellen und dann lösen
>  
>
> 4  1 0 -1 | 0
>   -3 -1 -1 0 | 0
>  
> also
>  
> 1 0 -1 -1 | 0
>  0 1  4  3 | 0
>  
> => n1 = [mm]\vektor{-1 \\ 3 \\ 0 \\ -1}[/mm] n2 = [mm]\vektor{-1 \\ 4 \\ -1 \\ 0}[/mm]
>  
> müsste stimmen oder?

Hallo,

ja, das ist richtig ausgerechnet. Der ganze von diesen beiden Vektoren aufgespannte Raum (sämtliche Linearkombinationen der beiden) besteht aus Vektoren, die senkrecht zum vorher betrachten Raum sind.
Es gibt als ganz schön viele Normalenvektoren in viele verschiedene Richtungen.

Bei Geraden im dreidimensionalen Raum ist das ja auch so.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]