www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Bestimmung Mittelsenkrechte
Bestimmung Mittelsenkrechte < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Mittelsenkrechte: Frage
Status: (Frage) beantwortet Status 
Datum: 12:17 So 17.04.2005
Autor: tweety01

Ich hab eine Frage:
und zwar muss ich die Mittelsenkrechten eines Dreiecks ausrechnen.
Ich hab zwar die Parameterform der Geraden von z.b. Strecke AB:

g:x = (2|-3|1) + r * (3|6|-9)

und den Mittelpunkt dieser Strecke:

M (7/2|0|-7/2)

jedoch weiss ich nu nich wie man auf den Richtungsvektor der Mittelsenkrechten kommt.
Hilfreich wär ein Ergebniss in Parameterform.

Danke schonmal im vorraus.

Liebe Grüße
Andrea


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Bestimmung Mittelsenkrechte: Vorschlag
Status: (Antwort) fertig Status 
Datum: 13:20 So 17.04.2005
Autor: Loddar

Hallo tweety!

Auch Dir hier [willkommenmr] !!

Wir freuen uns aber auch über 'ne nette Anrede / Begrüßung ;-) ...


> Ich hab eine Frage:
> und zwar muss ich die Mittelsenkrechten eines Dreiecks
> ausrechnen.
> Ich hab zwar die Parameterform der Geraden von z.b.
> Strecke AB:
>  
> g:x = (2|-3|1) + r * (3|6|-9)
>  
> und den Mittelpunkt dieser Strecke:
>  
> M (7/2|0|-7/2)
>  
> jedoch weiss ich nu nich wie man auf den Richtungsvektor
> der Mittelsenkrechten kommt.

Zunächst solltest Du Dir die Gleichung der Ebene ermitteln, die durch die drei Eckpunkte des Dreieckes $A$, $B$ und $C$ verläuft.

In dieser Ebene liegen dann natürlich auch unsere gesuchten Mittelsenkrechten.

Wie der Name schon sagt, steht die Mittelsenkrechte lotrecht (d.h. im rechten Winkel) auf die entsprechende Dreiecksseite.

Daher gilt für den Richtungsvektor der Mittelsenkrechten [mm] $\vec{r_m} [/mm] \ = \ [mm] \vektor{x_m \\ y_m \\ z_m}$ [/mm] :


[mm] $\vektor{3 \\ 6 \\ -9} [/mm] * [mm] \vektor{x_m \\ y_m \\ z_m} [/mm] \ = \ [mm] 3*x_m [/mm] + [mm] 6*y_m [/mm] - [mm] 9*z_m [/mm] \ = \ [mm] \red{0}$ $(\star)$ [/mm]


Deine Geradengleichung für die Mittelsenkrechte lautet ja:

[mm] $m_{AB} [/mm] \ : \ [mm] \vec{x} [/mm] \ = \ [mm] \vektor{3,5 \\ 0 \\ -3,5} [/mm] + s * [mm] \vektor{x_m \\ y_m \\ z_m}$ [/mm]

Dieses nun mit Deiner (Dreiecks-)Ebenengleichung gleichsetzen und die Beziehung [mm] $(\star)$ [/mm] berücksichtigen ...


Gruß
Loddar


Bezug
                
Bezug
Bestimmung Mittelsenkrechte: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:48 So 17.04.2005
Autor: tweety01

Hey..

sorry, wegen der fehlenden Begrüßung und danke für die nette Begrüßung :)

Dein Vorschlag hat mir sehr geholfen!

Ich denke ich weiss nu den Lösungsweg.

Danke!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]