www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Bestimmu. d. Tangentenfunktion
Bestimmu. d. Tangentenfunktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmu. d. Tangentenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Di 14.10.2008
Autor: lexxy

Aufgabe
Bestimmen Sie die Steigung der Tangente, [mm] \alpha [/mm] und die Tangentenfunktion für f und [mm] P_0! [/mm]
x [mm] \Rightarrow \bruch{1}{8}x^3 [/mm] ; [2;3]

Hallo Gemeinschaft.

ich habe die Aufgabe genauso wie sie da steht vorliegen. Leider kann ich nicht genau erschließen was denn mit [mm] \alpha [/mm] gemeint ist oder ob [2;3] P bzw. [mm] P_0 [/mm] ist.

Und hier mein Lösungsvorschlag:

Um diesen Spaß richtig anzupacken brauch ich erstmal diese tolle Formel:

[mm] \limes_{h\rightarrow\00 } \bruch{f(x_0 \pm h) - f(x_0)}{h} [/mm]

Was ist [mm] x_0 [/mm] ? Der Anstieg der Tangente zwischen dem Scheitelpunkt und [2;3]? Leider häng ich an diesem Punkt immer..

Hier nehm ich einfach mal an, dass [mm] x_0 [/mm] = 1
.. und in diese Formel würde ich wie folgt einsetzen:

[mm] \limes_{h\rightarrow\00 } \bruch{\bruch{1}{8}(1 + h)^3 - \bruch{1}{8}}{h} [/mm] =  [mm] \limes_{h\rightarrow\00 } \bruch{\bruch{1}{2}h + \bruch{3}{8}h²}{h} [/mm] = [mm] \bruch{1}{2} [/mm]

Soweit richtig? Falls nicht: Was mach ich falsch?
Jetzt kommt die nächste große Hürde für mich. Wie komm ich mit dem Wissen, dass die Steigung der Tangente 0,5 ist zur Tangentengleichung?

Ich hoffe ich hab mein Problem einigermaßen verständig darlegen können.
Danke für jede Hilfe.

        
Bezug
Bestimmu. d. Tangentenfunktion: Tangentengleichung
Status: (Antwort) fertig Status 
Datum: 21:35 Di 14.10.2008
Autor: Loddar

Hallo lexxy!


Leider sind Deine Ansätze nicht richtig ... Mach Dir mal eine Skizze mit der Funktion $f(x) \ = \ [mm] \bruch{1}{8}*x^3$ [/mm] und zeichne auch den Punkt [mm] $P_0 [/mm] \ [mm] \left( \ 2 \ | \ 3 \ \right)$ [/mm] ein.
Dieser liegt nicht auf dem Funktionsgraph von $f_$ .

Von diesem Punkt ist nun die Gerade gesucht, welche auch eine Tangente an $f_$ bildet. Dabei ist der Berührpunkt von Funktion und Tangente bis dato unbekannt.
Nennen wir diesen nun: $B \ [mm] \left( \ b \ | \ f(b) \ \right)$ [/mm] .

Die gesuchte Tangentngleichung ist eine Geradengleichung mit folgender allgemeiner Form: $t(x) \ = \ m*x+n$ .

Dabei wissen wir nun, dass folgende beiden Gleichungen gelten müssen, damit $t(x)_$ auch eine Tangente im Punkt $B_$ ist:
$$f(b) \ = \ t(b) \ \ \ \ \ [mm] \gdw [/mm] \ \ \ \ \ [mm] \bruch{1}{8}*b^3 [/mm] \ = \ m*b+n$$
$$f'(b) \ = \ t'(b) \ \ \ \ \ [mm] \gdw [/mm] \ \ \ \ \ [mm] \bruch{3}{8}*b^2 [/mm] \ = \ m$$
Zudem muss ja auch noch gelten:
$$t(2) \ = \ m*2+n \ = \ 3$$
Damit hast du nun ein Gleichungssystem mit 3 Unbekannten (m,n und b) sowie 3 Gleichungen ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]