www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Bestimmen von x in einer Reihe
Bestimmen von x in einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen von x in einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:13 Mi 25.11.2009
Autor: Ferolei

Aufgabe
Für [mm] x\in\IR [/mm] sei die folgende Reihe gegeben:
[mm] (\summe_{k=1}^{n}\bruch{x}{k^2})_n\in\IN [/mm]
Bestimme diejenigen x, für welche die Reihe divergiert,konvergiert bzw. absolut konvergiert.

Gibts für so eine Aufgabe eine bestimmte Vorgehensweise?

        
Bezug
Bestimmen von x in einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Mi 25.11.2009
Autor: Ferolei

Ich habe folgende Idee, vielleicht kann mir jemand sagen, ob das so geht:

Wir hatten das zwar noch nicht in der Vorlesung, aber ich habe sowas im Buch unter Konvergenzradius gefunden.

[mm] \limes_{n\rightarrow\infty}|\bruch{a_n}{a_{n+1}}|=\limes_{n\rightarrow\infty}\bruch{\bruch{1}{k^2}}{\bruch{1}{(k+1)^2}}=\limes_{n\rightarrow\infty}\bruch{(k+1)^2}{k^2}=\limes_{n\rightarrow\infty}k+1=\infty [/mm]


Und damit konvergiert die Reihe für jedes x aus [mm] \IR [/mm] ?

Bezug
                
Bezug
Bestimmen von x in einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:41 Do 26.11.2009
Autor: fred97


> Ich habe folgende Idee, vielleicht kann mir jemand sagen,
> ob das so geht:
>  
> Wir hatten das zwar noch nicht in der Vorlesung, aber ich
> habe sowas im Buch unter Konvergenzradius gefunden.
>  
> [mm]\limes_{n\rightarrow\infty}|\bruch{a_n}{a_{n+1}}|=\limes_{n\rightarrow\infty}\bruch{\bruch{1}{k^2}}{\bruch{1}{(k+1)^2}}=\limes_{n\rightarrow\infty}\bruch{(k+1)^2}{k^2}=\limes_{n\rightarrow\infty}k+1=\infty[/mm]
>  
>
> Und damit konvergiert die Reihe für jedes x aus [mm]\IR[/mm] ?


Unfug ! Es ist [mm] \limes_{k\rightarrow\infty}\bruch{(k+1)^2}{k^2}=1 [/mm]

FRED

Bezug
                        
Bezug
Bestimmen von x in einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Sa 28.11.2009
Autor: Ferolei

Ehrlich gesagt verwirren mich die ganzen Antworten hier, weil jeder was anderes meint.

In der Vorlesung hatten wir leider bisher kein Quotientenkriterium oder ähnliches.

@fred: ich seh auch nicht, wie du auf den Grenzwert 1 kommst. Und was würde das bedeuten? Ich soll ja angeben, für welche x die Reihe konvergiert bzw. divergiert (oder sogar absolut konvergiert). Wenn ich jetzt einen Grenzwert da raus habe, was bedeutet das dann?

Die Methode, ich probiere einfach Werte für x aus, halte ich für weniger sinnvoll, nur leider weiß ich nicht,wie man es sonst machen kann.

lG

Bezug
                                
Bezug
Bestimmen von x in einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Sa 28.11.2009
Autor: reverend

Hallo Ferolei,

das Problem ist, dass immer noch nicht klar ist, wie Deine Folge eigentlich aussieht. Du hast inzwischen verschiedene Varianten eingestellt, für die aber die Antwort auf die Frage, für welches x sie konvergieren, völlig unterschiedlich ausfällt. Es ist dann auch kein Wunder, wenn Du völlig unterschiedliche Antworten erhältst.

Der Grenzwert, um den es jetzt gerade geht, scheint mir mit keiner der Folgen etwas zu tun zu haben. Trotzdem will ich Dir eben zeigen, wieso er 1 beträgt:

[mm] \limes_{k\rightarrow\infty}\bruch{(k+1)^2}{k^2}=\limes_{k\rightarrow\infty}\left(\bruch{k+1}{k}\right)^2=\limes_{k\rightarrow\infty}\left(1+\bruch{1}{k}\right)^2=\left(\limes_{k\rightarrow\infty}\left(1+\bruch{1}{k}\right)\right)^2=1^2=1 [/mm]

Vor dem vorletzten Gleichheitszeichen (spätestens) sieht man deutlich, dass [mm] \tfrac{1}{k} [/mm] für wachsendes k gegen Null geht.

So, und jetzt nochmal die (Doppel-)Frage aller Fragen:
Wie ist die genaue Aufgabenstellung; um welche Folge geht es?

Liebe Grüße
reverend

Bezug
                                        
Bezug
Bestimmen von x in einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Sa 28.11.2009
Autor: Ferolei

Aufgabe
Hier nochmal die die Frage:
Für [mm] x\in\IR [/mm] seien folgende Reihen gegeben:

a) [mm] (\summe_{k=1}^{n}\bruch{x}{k^2})_n\in\IN [/mm]

b) [mm] (\summe_{k=1}^{n}(\bruch{x}{k})^k)_n\in\IN [/mm]

c) [mm] (\summe_{k=0}^{n}\bruch{(-1)^k*(x-1)^k}{2^k})_n\in\IN_0 [/mm]

Ok, also die Erklärung ist nachvollziehbar. Und was bedeutet das für mein x dass der Grenwert 1 ist?

Mir ist nicht klar, wie ich anhand diesem bestimmten kann, für welche x die Reihe konvergiert etc.

lG

Bezug
                                                
Bezug
Bestimmen von x in einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:07 Sa 28.11.2009
Autor: reverend

Aufgabe b ist immer noch nicht lesbar.

Heißt das [mm] \left(\summe_{k=1}^{n}\left(\bruch{x}{k}\right)^k\right)_n\in\IN [/mm] ?

Benutze die Vorschau-Funktion, bevor Du einen Beitrag absendest. Die TeX-Eingaben sind ja nicht immer einfach, und so sieht man schon mal, was der Editor daraus macht.

Wie ich Deine Formeleingabe verändert habe, siehst Du, wenn Du auf die Formel oben klickst.

Ich mache mich solange mal an Aufgabe a.

Bezug
                                                        
Bezug
Bestimmen von x in einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Sa 28.11.2009
Autor: Ferolei

Ja genau das ist gemeint.
Gut,werde zukünftig meine Eingaben überprüfen, bevor ich sie abschicke.

Bezug
                                                
Bezug
Bestimmen von x in einer Reihe: Aufgabe a
Status: (Antwort) fertig Status 
Datum: 18:15 Sa 28.11.2009
Autor: reverend

Hallo nochmal,

> a) [mm] (\summe_{k=1}^{n}\bruch{x}{k^2})_n\in\IN [/mm]

Die Antwort hierauf hast Du schon. Man kann das x aus der Summe ziehen, die verbleibende Reihe ist konvergent - also auch für jedes x.

[mm] \summe_{k=1}^{n}\bruch{x}{k^2}=x\summe_{k=1}^{n}\bruch{1}{k^2} [/mm]

lg
rev


Bezug
                                                        
Bezug
Bestimmen von x in einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:58 Sa 28.11.2009
Autor: Ferolei

Ich habe hier noch eine Frage zu.

Soll ich hier so argumentieren, wie ich angefangen hatte und du später weiter erklärt hast (Also mit der Form [mm] |\bruch{a_n}{a_{n+1}}| [/mm] oder wie die erste Person, die sagte, dass der Grenzwert für die Summe ohne x [mm] \bruch{\pi^2}{6} [/mm] ist?

Was mich daran stört ist, dass [mm] \bruch{\pi^2}{6} [/mm] ja etwas anderes als Grenzwert 1 ist (was du ja raus hattest)

Bezug
                                                                
Bezug
Bestimmen von x in einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Sa 28.11.2009
Autor: leduart

Hallo
die antwort gehörte nicht zu der Aufgabe, wie man sie hjetzt lesen kann.
Gruss leduart

Bezug
                                                                        
Bezug
Bestimmen von x in einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 So 29.11.2009
Autor: Ferolei

Hallo, danke für die Hilfe.

Also die geomet. Reihe hatten wir mal. Also 2 Beispiele dazu.

Und die [mm] 1/k^2 [/mm] hatten wir mal zeigen müssen,dass sie konvergiert. Unser Dozent sagte dann einfach dazu, dass Euler den Wert gefunden hat.

Alternierende Reihen hatten wir auch mal. zB die alternierende harmonische Reihe mit Umordnungen und so.

Und in b) bin ich mir nicht sicher gewesen ob ich die geomterische nehmen darf, weil es ja jeweils hoch k ist.
Wir hatten bisher aber immer nur den Fall, dass der Zähler kleiner als der Nenner war.

Viele Grüße, Ferolei

Bezug
                                                
Bezug
Bestimmen von x in einer Reihe: Aufgabe b
Status: (Antwort) fertig Status 
Datum: 18:22 Sa 28.11.2009
Autor: reverend

...hat Felix schon beantwortet.

Die Reihe konvergiert für jedes x.
Interessant ist ja immer nur das Verhalten "im Unendlichen" bzw. eben gegen unendlich. Und da ist es deutlich: irgendwann wird k>|x|, und ab da ist der Nachweis der Konvergenz kein Problem mehr.

Bezug
                                                        
Bezug
Bestimmen von x in einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Sa 28.11.2009
Autor: Ferolei

Ich kenne das Majorantenkriterium nur leider nicht.
Was genau soll ich an dieser Stelle denn zeigen?

Bezug
                                                
Bezug
Bestimmen von x in einer Reihe: zu Aufgabe c
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Sa 28.11.2009
Autor: reverend

Diese Folge ist neu in der Diskussion.

Was hast Du bisher mit ihr versucht? Welche Konvergenzkriterien hast Du mit welchem Erfolg angewandt?

Bezug
                                                        
Bezug
Bestimmen von x in einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Sa 28.11.2009
Autor: Ferolei

Mit der habe ich bisher nichts versucht, weil ich erst einmal die anderen verstehen wollte, die einfacher wirken.

Mich stört das ein wenig, dass immer von konvergenzkriterien gesprochen wird, da wir bisher wirklich noch keine hatten.
Ich habe das Gefühl, dass unser Übungsgruppenleiter, der die Blätter erstellt, nicht so ganz genau weiß, was in unserer Vorlesung passiert.
Natürlich kann ich mir alles selbst beibringen und mich einlesen,aber dann heißt es wieder "das haben wir noch nicht gezeigt, benutze bitte nur Sätze aus der Vorlesung"....

Bezug
                                                                
Bezug
Bestimmen von x in einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Sa 28.11.2009
Autor: reverend

oh.
Das ist in der Tat ein Problem. Leider keins, das wir hier lösen können.
Normalerweise gibt es ja ein Skript, und die Übungsgruppenleiter haben einen Plan, an welchem Datum die Vorlesung wie weit kommt. Wenn der Dozent dann hinterherhinkt, gibt es ein Problem.

Das solltest Du ansprechen.

Ohne Konvergenzkriterien kann man hier wenig machen, es sei denn, es gelingt einem, den tatsächlichen Wert der Reihe zu berechnen, will heißen ohne zusätzlichen Schnickschnack den Grenzwert zu bestimmen. Das ist in den meisten Fällen sehr schwierig, wenn überhaupt möglich.

Bezug
                                                                        
Bezug
Bestimmen von x in einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Sa 28.11.2009
Autor: Ferolei

Leider haben wir kein Skript. Wir müssen 1,5Std. alles fleißig von der Tafel abschreiben.

Das ist dann natürlich nicht so gut, wenn man ohne nicht wirklich weiterkommt.

Muss ich die b) dann irgendwie nach oben abschätzen ? Also eine Reihe finden, die etwas größer ist vom Wert und konvergiert?

Bezug
                                                                                
Bezug
Bestimmen von x in einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Sa 28.11.2009
Autor: reverend

Ja, gut überlegt. Genau das nennt man eine Majorante.

Bezug
                                                
Bezug
Bestimmen von x in einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Sa 28.11.2009
Autor: leduart

Hallo
Habt ihr denn z. Bsp die Reihe
[mm] \summe_{k=1}^{n}1/k^2 [/mm]  behandelt?
Gruss leduart

Bezug
        
Bezug
Bestimmen von x in einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Mi 25.11.2009
Autor: Al-Chwarizmi


> Für [mm]x\in\IR[/mm] sei die folgende Reihe gegeben:
>  [mm](\summe_{k=1}^{n}\bruch{x}{k^2})_n\in\IN[/mm]
>  Bestimme diejenigen x, für welche die Reihe
> divergiert,konvergiert bzw. absolut konvergiert.
>  Gibts für so eine Aufgabe eine bestimmte Vorgehensweise?


Falls du diese Reihe tatsächlich richtig notiert hast,
so ist

      [mm] $\left(\summe_{k=1}^{n}\bruch{x}{k^2}\right)_{n\in\IN}\ [/mm] =\ [mm] x*\left(\summe_{k=1}^{n}\bruch{1}{k^2}\right)$ [/mm]

Die Summe in der Klammer hat für [mm] n\to\infty [/mm] den Grenzwert [mm] \frac{\pi^2}{6} [/mm]

Mit anderen Worten:  für alle [mm] x\in\IR [/mm] ist die Reihe konver-
gent (und auch absolut konvergent), und ihr Wert ist ge-
geben durch

       [mm] $\frac{x*\pi^2}{6}$ [/mm]



LG    Al-Chw.




Bezug
                
Bezug
Bestimmen von x in einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Mi 25.11.2009
Autor: Ferolei

Aufgabe
und für [mm] \summe_{k=1}^{n}(\bruch{x}{k})^k [/mm] ?

Ja so meinte ich das ja, nur dass ich die Formel von euler noch verwendet hatte.

Jetzt habe ich oben aber das Problem, dass ich das x nicht ausgeklammert kriege...

Bezug
                        
Bezug
Bestimmen von x in einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 Do 26.11.2009
Autor: reverend

Hallo Ferolei,

da kannst Du ja auch kein x ausklammern (na gut, eins schon...).

Ich sehe allerdings keinen Zusammenhang zu Deiiner ursprünglich eingestellten Frage.

Hast Du schon Quotienten- oder Wurzelkriterium versucht? Beide sehen ja ganz vielversprechend aus. Welche kennst Du noch?

Im übrigen scheint der Konvergenzbereich wohl (möglicher x) bei numerisch-experimenteller Überprüfung wesentlich größer zu sein, aber ich sehe nicht, wie man den zeigen kann. Darum lasse ich die Frage nur auf "teilweise beantwortet".

lg
reverend

Bezug
                        
Bezug
Bestimmen von x in einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 04:19 Do 26.11.2009
Autor: felixf

Hallo!

> und für [mm]\summe_{k=1}^{n}(\bruch{x}{k})^k[/mm] ?

Die konvergiert fuer jedes $x [mm] \in \IR$. [/mm]

Fuer ein festes $x$ ist fuer gross genuges $k$ [mm] $|\frac{x}{k}| [/mm] < 1$. Fuer den unendlichen Teil der Reihe kannst du also das Majorantenkriterium benutzen, der endliche Anfang fuer den $|x/k| [mm] \ge [/mm] 1$ ist kannst du weglassen.

LG Felix


Bezug
                                
Bezug
Bestimmen von x in einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Sa 28.11.2009
Autor: Ferolei

Ich verstehe hier nicht, was mit dem ^k passiert bei der Betrachtung.  Ist das irrelevant?

Was ist denn der unendliche Teil meiner Reihe?

Bezug
                                        
Bezug
Bestimmen von x in einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Sa 28.11.2009
Autor: leduart

Hallo
zu b)
ihr habt sicher die geometrische Reihe gehabt. versuch mal die in der b) zu sehen, du weisst für welch q die geom. Reihe konvergiert, dann findest du hier das entsprechende x.
die letzte Reihe alterniert. Habt ihr arüber was gemacht.? Statt zu sagen, was ihr nicht gemacht habt, erzähl mal, was ihr bisher für Reihen gemacht habt, und wie ihr irgendeine Konvergenz dabei gezeigt habt.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]