www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Bestimmen von P(A)
Bestimmen von P(A) < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen von P(A): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Fr 27.03.2009
Autor: Parkan

Aufgabe
Das Ereignis A ist dreimal so wahrscheinlich wie sein Gegenereignis. Bestimme P(A) und [mm] P(\overline{A}) [/mm]

Hallo an alle :)

Wäre das so richtig?

P(A)  und [mm] P(\overline{A})= \bruch{P(A)}{3} [/mm]

danke
gruß
Nina

        
Bezug
Bestimmen von P(A): soweit richtig
Status: (Antwort) fertig Status 
Datum: 18:03 Fr 27.03.2009
Autor: Loddar

Hallo Nina!


Das stimmt soweit. Nun bedenke noch, dass gilt:
[mm] $$P(A)+P(\overline{A}) [/mm] \ = \ 1$$

Gruß
Loddar


Bezug
                
Bezug
Bestimmen von P(A): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Fr 27.03.2009
Autor: Parkan

P(A)= [mm] 1-P(\overline{A}) [/mm]

so ?

Bezug
                        
Bezug
Bestimmen von P(A): Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 Fr 27.03.2009
Autor: abakus


> P(A)= [mm]1-P(\overline{A})[/mm]
>  
> so ?

Hallo,
es sind zwei konkrete Zahlenwerte gesucht!
Welche beiden Zahlen erfüllen denn die Bedingung, dass ihre Summe 1 ist UND ein Summand dreimal so groß ist wie der andere???
Gruß Abakus


Bezug
                                
Bezug
Bestimmen von P(A): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Sa 28.03.2009
Autor: Parkan

P(A)= 0.66
[mm] P(\overline{A})=0.33 [/mm]

?

Bezug
                                        
Bezug
Bestimmen von P(A): Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Sa 28.03.2009
Autor: abakus


> P(A)= 0.66
>  [mm]P(\overline{A})=0.33[/mm]
>  
> ?

Ach?
0,66 ist also dreimal so groß wie 0,33???


Bezug
                                                
Bezug
Bestimmen von P(A): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:03 Sa 28.03.2009
Autor: Parkan

:D
Ok ich glaube jetzt habe ich es.

0.25 und 0.75

0.75 ist drei mal mehr und 0.75 +0.25 = 1

Bezug
                                                        
Bezug
Bestimmen von P(A): richtig
Status: (Antwort) fertig Status 
Datum: 13:35 Sa 28.03.2009
Autor: Loddar

Hallo Nina!


Das stimmt [ok] .

Aber mir scheint, das du hier eher geraten oder probiert hast; und nicht gerechnet ...


Gruß
Loddar


Bezug
                                                                
Bezug
Bestimmen von P(A): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:55 Sa 28.03.2009
Autor: Parkan

1 = [mm] P(A)+\bruch{P(A)}{3} [/mm]  
1 = [mm] \bruch{4P(A)}{3} [/mm]    | *3
3 = 4 P(A)   | 4
[mm] \bruch{3}{4} [/mm] = P(A)

1-P(A) [mm] =P(\overline{A}) [/mm]
1 - [mm] \bruch{3}{4} [/mm] = 0,25

Also
[mm] \bruch{3}{4} [/mm] = P(A)
0,25 = [mm] P(\overline{A}) [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]