www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Bestimmen vom Formfaktor a
Bestimmen vom Formfaktor a < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmen vom Formfaktor a: Tipp, Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:42 So 07.06.2009
Autor: Mogri

Aufgabe
Bestimmen Sie a aus R so, dass der Graph zu [mm] f(x)=ax^{3} [/mm] die Gerade mit [mm] g(x)=\bruch{-1}{3}x+\bruch{4}{3} [/mm] rechtwinklig schneidet.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Frage: Welche Tipps zum Lösen der Aufgabe habt ihr für mich?
Ich habe mir sehr lange Gedanken gemacht und habe z.B. die Idee, dass die Steigung des Graphen im Schnittpunkt 3 sein muss, wegen der der Orthogonalitätsbedingung. Mehr Ansatz habe ich leider nicht. Ich bin eigentlich ganz gut in Mathe, aber vor der Arbeit am Mittwoch habe ich gerade richtig Angst.

Über hilfreiche Ansätze/Tipps würde ich  mich unheimlich freuen.

Schönen Sonntag noch,
Mogri

        
Bezug
Bestimmen vom Formfaktor a: Bestimmungsgleichungen
Status: (Antwort) fertig Status 
Datum: 11:51 So 07.06.2009
Autor: Loddar

Hallo Mogri,

[willkommenmr] !!


Deine Idee ist schon sehr gut mit [mm] $f_a'(x_s) [/mm] \ = \ 3$ .

Schreiben wir das vollständig auf:
[mm] $f_a'(x_s) [/mm] \ = \ [mm] 3a*x_s^2 [/mm] \ = \ 3  $ (*)
Zudem muss für den Schnittpunkt gelten:
[mm] $f_a'(x_s) [/mm] \ = \ [mm] g(x_s)$ [/mm] [notok]
Das meint Loddar so nicht, sondern: [mm] $$f_a(x_s) [/mm] \ = \ [mm] g(x_s)$$ [/mm]
[mm] $$a*x_s^3 [/mm] \ = \ [mm] -\bruch{1}{3}*x_s+\bruch{4}{3}$$ [/mm]
Daraus können wir machen, indem wir links (*) einsetzen:
[mm] $$\bruch{1}{3}*\red{3a*x_s^2}*x_s [/mm] \ = \ [mm] -\bruch{1}{3}*x_s+\bruch{4}{3}$$ [/mm]
[mm] $$\bruch{1}{3}*\red{3}*x_s [/mm] \ = \ [mm] -\bruch{1}{3}*x_s+\bruch{4}{3}$$ [/mm]
Nun diese Gleichung nach [mm] $x_s [/mm] \ = \ ...$ auflösen.

[edit: informix]

Gruß
Loddar


Bezug
                
Bezug
Bestimmen vom Formfaktor a: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:12 So 07.06.2009
Autor: Mogri

Hallo,

erstmal vielen Dank für die rasche und sehr übersichtliche Antwort!

Allerdings sind bei mir noch drei Fragen offen.
1.) Wenn ich auf [mm] x_{s} [/mm] auflöse, muss ich das dann in irgendeine Gleichung einsetzen und auf a auflösen?
2) Du schreibst 3 [mm] a\*xs^{2} [/mm] = 3 , aber warum steht vor dem [mm] x_{s} [/mm] auch eine 3?
3) Was hast du in dem Schritt gemacht, den du rot markiert hast?

Es tut mir leid, dass ich solche Fragen stelle, aber momentan stehe ich einfach nur auf dem Schlauch.

Gruß
Mogri

Bezug
                        
Bezug
Bestimmen vom Formfaktor a: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 07.06.2009
Autor: informix

Hallo Mogri und [willkommenmr],

> Hallo,
>  
> erstmal vielen Dank für die rasche und sehr übersichtliche
> Antwort!
>  
> Allerdings sind bei mir noch drei Fragen offen.
> 1.) Wenn ich auf [mm]x_{s}[/mm] auflöse, muss ich das dann in
> irgendeine Gleichung einsetzen und auf a auflösen?
> 2) Du schreibst 3 [mm]a\*xs^{2}[/mm] = 3 , aber warum steht vor dem
> [mm]x_{s}[/mm] auch eine 3?
>  3) Was hast du in dem Schritt gemacht, den du rot markiert
> hast?
>  

Ich habe Loddars Antwort schon ein wenig editiert.

Aufgabe
Bestimmen Sie a aus R so, dass der Graph zu $ [mm] f(x)=ax^{3} [/mm] $ die Gerade mit $ [mm] g(x)=\bruch{-1}{3}x+\bruch{4}{3}rechtwinklig [/mm] $ schneidet.  

1. [mm] f(x_S)=g(x_S) [/mm]
2. [mm] f'(x_S)*g'(x_S)=-1 [/mm] (hast du schon erkannt)

Dann ermittelst du [mm] x_S [/mm] und anschließend setzt du [mm] x_S [/mm] in (1.) ein, um [mm] y_S [/mm] zu bestimmen, dann beides in f ein, um a zu ermitteln.

Jetzt klar(er)?

Gruß informix

Bezug
                
Bezug
Bestimmen vom Formfaktor a: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:50 Mo 08.06.2009
Autor: Mogri

Hallo,

also das was du verbessert hast verstehe ich jetzt auch einwandfrei!
Nur die folgende Stelle ist mir immer noch nicht klar

> wir machen, indem wir links (*) einsetzen:
>  [mm]\bruch{1}{3}*\red{3a*x_s^2}*x_s \ = \ -\bruch{1}{3}*x_s+\bruch{4}{3}[/mm]
>  

Ich verstehe immer noch nicht wie "das Rote" da hinkommt. Warum darf man 1 da einsetzen?

Gruß Mogri

Bezug
                        
Bezug
Bestimmen vom Formfaktor a: umgeformt
Status: (Antwort) fertig Status 
Datum: 20:28 Mo 08.06.2009
Autor: Loddar

Hallo Mogri!


Ich habe einfach den Term [mm] $a*x_s^3$ [/mm] auseinandergezogen zu:
[mm] $$a*x_s^3 [/mm] \ = \ [mm] \bruch{1}{3}*3*x_s*x_s*x_s [/mm] \ = \ [mm] \bruch{1}{3}*\blue{3x_s^2}*x_s$$ [/mm]

Nun kann ich für den blauen Term exakt den bekannten Wert der Ableitung mit [mm] $f_a'(x_s) [/mm] \ = \ [mm] 3*x_s^2 [/mm] \ = \ 3$ einsetzen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]