www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Bestimme Anzahl Kugeln i Urne
Bestimme Anzahl Kugeln i Urne < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimme Anzahl Kugeln i Urne: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Fr 05.11.2021
Autor: hase-hh

Aufgabe
In einer Urne liegen schwarze und weiße Kugeln und zwar doppelt so viele
schwarze wie weiße. Die Wahrscheinlichkeit dafür, dass man bei gleichzeitigem Herausnehmen von drei Kugeln, zwei schwarze und eine weiße Kugel erhält, ist  P [mm] \ge [/mm] ½ .

Weisen Sie nach, dass in der Urne höchstens 12 Kugeln sind.

Moin Moin,

ich kann diese Aufgabe natürlich durch Probieren lösen. Aber mich interessiert in erster Linie, ob man das Problem auch allgemein lösen kann?


Lösen durch Probieren

Es handelt sich um ein Ziehen auf einen Griff bzw. ein Ziehen ohne Zurücklegen, wobei die Reihenfolge keine Rolle spielt.

Ich betrachte die Zufallsgröße X: "Anzahl der gezogenen schwarzen Kugeln"; d.h. X ist hypergeometrisch verteilt mit N, M = 2/3*N, n =3  und k = 2. Wenn das Verhältnis von schwarzen Kugeln zu weißen Kugeln 2:1 betragen soll, kommen für die Gesamtzahl der Kugeln in der Urne nur durch drei teilbare Zahlen infrage.

P(X=2) = [mm] \bruch{\vektor{M \\ 2}*\vektor{N-M \\ 1}}{\vektor{N \\ 3}} [/mm]


1) N = 12  =>  M = 8,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{8 \\ 2}*\vektor{4 \\ 1}}{\vektor{12 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 50,9 %


2) N =  9  =>  M = 6,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{6 \\ 2}*\vektor{3 \\ 1}}{\vektor{9 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 53,6 %


3) N =  6  =>  M = 4,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{4 \\ 2}*\vektor{2 \\ 1}}{\vektor{6 \\ 3}} [/mm]

P(X=2) = 60 %



4) N =  3  =>  M = 2,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{2 \\ 2}*\vektor{1 \\ 1}}{\vektor{3\\ 3}} [/mm]

P(X=2) = 100 %


5) N = 15  =>  M = 10,  n = 3, k = 2  

mit  P(X=2) = [mm] \bruch{\vektor{10\\ 2}*\vektor{5 \\ 1}}{\vektor{15 \\ 3}} [/mm]

P(X=2) [mm] \approx [/mm] 49,5 %


D.h. die Wahrscheinlichkeit beim gleichzeitigen Ziehen von drei Kugeln, zwei schwarze und eine weiße Kugel zu ziehen, nimmt mit wachsender Anzahl N der Kugeln in der Urne, immer weiter ab.


Allgemeine Lösung

Wie gesagt, gibt es vielleicht auch eine allgemeine Lösung?

Idee:

N = 3*z  M = 2*z  n = 3  k = 2

P(X=2) = [mm] \bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2} [/mm]

P(X=2) = [mm] \bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2} [/mm]


Aber kann man das weiter umformen, d.h. deutlich vereinfachen?


Danke & Gruß!




















        
Bezug
Bestimme Anzahl Kugeln i Urne: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Sa 06.11.2021
Autor: statler


> In einer Urne liegen schwarze und weiße Kugeln und zwar
> doppelt so viele
> schwarze wie weiße. Die Wahrscheinlichkeit dafür, dass
> man bei gleichzeitigem Herausnehmen von drei Kugeln, zwei
> schwarze und eine weiße Kugel erhält, ist  P [mm]\ge[/mm] ½ .
>  
> Weisen Sie nach, dass in der Urne höchstens 12 Kugeln
> sind.

Guten Morgen!

> ich kann diese Aufgabe natürlich durch Probieren lösen.
> Aber mich interessiert in erster Linie, ob man das Problem
> auch allgemein lösen kann?
>  
>
> Lösen durch Probieren
>  
> Es handelt sich um ein Ziehen auf einen Griff bzw. ein
> Ziehen ohne Zurücklegen, wobei die Reihenfolge keine Rolle
> spielt.
>
> Ich betrachte die Zufallsgröße X: "Anzahl der gezogenen
> schwarzen Kugeln"; d.h. X ist hypergeometrisch verteilt mit
> N, M = 2/3*N, n =3  und k = 2. Wenn das Verhältnis von
> schwarzen Kugeln zu weißen Kugeln 2:1 betragen soll,
> kommen für die Gesamtzahl der Kugeln in der Urne nur durch
> drei teilbare Zahlen infrage.
>
> P(X=2) = [mm]\bruch{\vektor{M \\ 2}*\vektor{N-M \\ 1}}{\vektor{N \\ 3}}[/mm]
>  
>
> 1) N = 12  =>  M = 8,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{8 \\ 2}*\vektor{4 \\ 1}}{\vektor{12 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 50,9 %
>  
>
> 2) N =  9  =>  M = 6,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{6 \\ 2}*\vektor{3 \\ 1}}{\vektor{9 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 53,6 %
>  
>
> 3) N =  6  =>  M = 4,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{4 \\ 2}*\vektor{2 \\ 1}}{\vektor{6 \\ 3}}[/mm]
>  
> P(X=2) = 60 %
>  
>
>
> 4) N =  3  =>  M = 2,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{2 \\ 2}*\vektor{1 \\ 1}}{\vektor{3\\ 3}}[/mm]
>  
> P(X=2) = 100 %
>  
>
> 5) N = 15  =>  M = 10,  n = 3, k = 2  

>
> mit  P(X=2) = [mm]\bruch{\vektor{10\\ 2}*\vektor{5 \\ 1}}{\vektor{15 \\ 3}}[/mm]
>  
> P(X=2) [mm]\approx[/mm] 49,5 %
>  
>
> D.h. die Wahrscheinlichkeit beim gleichzeitigen Ziehen von
> drei Kugeln, zwei schwarze und eine weiße Kugel zu ziehen,
> nimmt mit wachsender Anzahl N der Kugeln in der Urne, immer
> weiter ab.

Das ist jetzt zwar zu vermuten, aber keinesfalls stringent bewiesen.

>
> Allgemeine Lösung
>
> Wie gesagt, gibt es vielleicht auch eine allgemeine
> Lösung?
>  
> Idee:

Gute Idee!

>
> N = 3*z  M = 2*z  n = 3  k = 2
>  
> P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
> P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
>
> Aber kann man das weiter umformen, d.h. deutlich
> vereinfachen?

Ja, kann man.

[mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} = \bruch{(2z-1)(2z)}{(3z-2)(3z-1)}[/mm]

Das ergibt für z = 5 den Wert [mm] $\frac{90}{192}$. [/mm] Außerdem ist der Grenzwert offenbar [mm] $\frac{4}{9}$. [/mm] Man muß also noch zeigen, daß die Folge für $z [mm] \ge [/mm] 5$ monoton fallend ist.
Das überlasse ich erstmal dir.

Gruß Dieter


Bezug
                
Bezug
Bestimme Anzahl Kugeln i Urne: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:05 So 07.11.2021
Autor: hase-hh

...
> > Allgemeine Lösung
> >
> > N = 3*z  M = 2*z  n = 3  k = 2


> > P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*\vektor{z \\ 1}}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]
>  
> >  

> > P(X=2) = [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} \ge \bruch{1}{2}[/mm]

> > Aber kann man das weiter umformen, d.h. deutlich
> > vereinfachen?
>  
> Ja, kann man.
>
> [mm]\bruch{\vektor{2z \\ 2}*z}{\vektor{3z\\ 3}} = \bruch{(2z-1)(2z)}{(3z-2)(3z-1)}[/mm]

Also, da [mm] \vektor{n \\ k} [/mm] = [mm] \bruch{n!}{(n-k)!*k!} [/mm] folgt:

[mm] \vektor{2z \\ 2} [/mm] = [mm] \bruch{(2z)!}{(2z-2)!*2!} [/mm] = [mm] \bruch{2z*(2z-1)*(2z-2)!}{(2z-2)!*2*1} [/mm] = [mm] \bruch{2z*(2z-1)}{2} [/mm]

[mm] \vektor{3z \\ 3} [/mm] = [mm] \bruch{(3z)!}{(3z-3)!*3!} [/mm] = [mm] \bruch{3z*(3z-1)*(3z-2)*(3z-3)!}{(3z-3)!*3*2*1} [/mm] = [mm] \bruch{3z*(3z-1)*(3z-2)}{6} [/mm]

Eingesetzt in die Formel

[mm]\bruch{\bruch{2z*(2z-1)}{2}*z}{\bruch{3z*(3z-1)*(3z-2)}{6}} \ge \bruch{1}{2}[/mm]

[mm]\bruch{{z*(2z-1)}*z}{\bruch{z*(3z-1)*(3z-2)}{2}} \ge \bruch{1}{2}[/mm]

[mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]


> Das ergibt für z = 5 den Wert [mm]\frac{90}{192}[/mm]. Außerdem
> ist der Grenzwert offenbar [mm]\frac{4}{9}[/mm]. Man muß also noch
> zeigen, daß die Folge für [mm]z \ge 5[/mm] monoton fallend ist.

wenn ich jetzt umforme

[mm] \bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2} [/mm]   | *2 *(3z-1)*(3z-2)

(2z-1)*2*z*2 [mm] \ge [/mm]  (3z-1)*(3z-2)
  
[mm] 8z^2-4z \ge 9z^2 [/mm] -9z +2

[mm] -z^2 [/mm] +5z -2 [mm] \ge [/mm] 0

Die Nullstellen begrenzen hier das Intervall, in dem die Funktionswerte von [mm] -z^2 [/mm] +5z -2 < 0 sind, d.h. das Intervall, in dem die Ungleichung gilt.

[mm] z_1 \approx [/mm] 4,56

[mm] z_2 \approx [/mm] 0,44  

Also müsste z [mm] \ge [/mm] 0,44 oder z [mm] \le [/mm] 4,56 sein bzw.  =>  z [mm] \in [/mm] [1;4] .




>  


Bezug
                        
Bezug
Bestimme Anzahl Kugeln i Urne: Antwort
Status: (Antwort) fertig Status 
Datum: 08:06 So 07.11.2021
Autor: statler

Moinsen!
>  
> Eingesetzt in die Formel
>
> [mm]\bruch{\bruch{2z*(2z-1)}{2}*z}{\bruch{3z*(3z-1)*(3z-2)}{6}} \ge \bruch{1}{2}[/mm]
>  
> [mm]\bruch{{z*(2z-1)}*z}{\bruch{z*(3z-1)*(3z-2)}{2}} \ge \bruch{1}{2}[/mm]
>  
> [mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]
>  
>
> > Das ergibt für z = 5 den Wert [mm]\frac{90}{192}[/mm]. Außerdem
> > ist der Grenzwert offenbar [mm]\frac{4}{9}[/mm]. Man muß also noch
> > zeigen, daß die Folge für [mm]z \ge 5[/mm] monoton fallend ist.
>  
> wenn ich jetzt umforme
>
> [mm]\bruch{{(2z-1)}*2*z}{(3z-1)*(3z-2)} \ge \bruch{1}{2}[/mm]   |
> *2 *(3z-1)*(3z-2)

Jetzt wird es tückisch! Bei Ungleichungen muß man aufpassen, daß sich die Richtung umkehrt, wenn man mit Werten < 0 multipliziert. Gegebenenfalls muß man dazu Fälle unterscheiden. Hier ist es besser, statt der Ungleichung die zugehörige Gleichung zu untersuchen.

> (2z-1)*2*z*2 [mm]\ge[/mm]  (3z-1)*(3z-2)
>    
> [mm]8z^2-4z \ge 9z^2[/mm] -9z +2
>
> [mm]-z^2[/mm] +5z -2 [mm]\ge[/mm] 0
>
> Die Nullstellen begrenzen hier das Intervall, in dem die
> Funktionswerte von [mm]-z^2[/mm] +5z -2 < 0 sind, d.h. das
> Intervall, in dem die Ungleichnung gilt.

Die Funktion [mm]f(z) = -z^2[/mm] +5z -2 ist eine nach unten geöffnete Parabel, ....

>
> [mm]z_1 \approx[/mm] 4,56
>
> [mm]z_2 \approx[/mm] 0,44  
>
> Also müsste z > 0,44 oder z < 4,56 sein.
>
> =>  z [mm]\in[/mm] [1;4] sein.

... also ist der Funktionswert für z [mm]\in[/mm] [1;4] > 0.

Wie sieht das jetzt bei dem Term [mm] $\frac{{(2z-1)}*2*z}{(3z-1)*(3z-2)} [/mm] =: g(z)$ aus, der uns eigentlich interessiert?

Wir kennen die Stellen, wo $ g(z) = [mm] \frac{1}{2}$ [/mm] ist. Für z [mm]\in[/mm] [1;4] ist g(z) stetig, also reicht es, z = 2 einzusetzen: $g(2) = [mm] \frac{3}{5} [/mm] > [mm] \frac{1}{2}$. [/mm] Also ist g(z) im gesamten Intervall $> [mm] \frac{1}{2}$, [/mm] also ist $z [mm] \ge [/mm] 5$ die Lösung.

Den Beweis der Monotonie haben wir auf diesem Wege vermieden.

Gruß Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]