www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beschränktheit und Grenzwerte
Beschränktheit und Grenzwerte < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit und Grenzwerte: Folgen
Status: (Frage) beantwortet Status 
Datum: 18:36 Mi 24.11.2004
Autor: KingMob

Ich habe eine Aussage zu beweisen, und zwar folgende :

Seien die Folgen (an) und (bn) mit n [mm] \in \IN [/mm] und [mm] \limes_{n\rightarrow\infty} [/mm] (an) = 0 und (bn) beschränkt.
Dann gilt  [mm] \limes_{n\rightarrow\infty} [/mm] (an)(bn) = 0.

Ich weiß nicht richtig, wo ich da anfangen soll, etwas zu beweisen. Hab mir gedacht, dass es vielleicht Sinn machen würde, eine Fallunterscheidung zu machen, und zwar falls (bn) konvergiert resp. nicht konvergiert. (an) ist sowieso beschränkt, und  [mm] \limes_{n\rightarrow\infty} [/mm] (bn) =: b im 1.Fall und  [mm] \limes_{n\rightarrow\infty} [/mm] (bn) = [mm] \infty [/mm] im 2.Fall.Aber dann weiß ich nicht mehr weiter...

        
Bezug
Beschränktheit und Grenzwerte: Tipp zur Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 19:33 Mi 24.11.2004
Autor: Clemens

Hallo KingMob!

> Ich habe eine Aussage zu beweisen, und zwar folgende :
>  
> Seien die Folgen (an) und (bn) mit n [mm]\in \IN[/mm] und
> [mm]\limes_{n\rightarrow\infty}[/mm] (an) = 0 und (bn) beschränkt.
>  Dann gilt  [mm]\limes_{n\rightarrow\infty}[/mm] (an)(bn) = 0.
>  
> Ich weiß nicht richtig, wo ich da anfangen soll, etwas zu
> beweisen. Hab mir gedacht, dass es vielleicht Sinn machen
> würde, eine Fallunterscheidung zu machen, und zwar falls
> (bn) konvergiert resp. nicht konvergiert. (an) ist sowieso
> beschränkt, und  [mm]\limes_{n\rightarrow\infty}[/mm] (bn) =: b im
> 1.Fall und  [mm]\limes_{n\rightarrow\infty}[/mm] (bn) = [mm]\infty[/mm] im
> 2.Fall.Aber dann weiß ich nicht mehr weiter...

Du solltest die Angabe benutzen, dass [mm] (b_{n}) [/mm] beschränkt ist. Dann brauchst du auch keine Fallunterscheidung. Bei Beschränktheit gilt ja, dass es ein S gibt mit [mm] |b_{n}| [/mm] <= S für alle n. Dann gilt natürlich auch [mm] |a_{n}*b_{n}| [/mm] <= [mm] S*|a_{n}| [/mm] für alle n und dann bist du schon fast am Ende.

Gruß
Clemens


Bezug
        
Bezug
Beschränktheit und Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Mi 24.11.2004
Autor: Kryzefix

hallo KingBob,
sorry ich habe leider kein Hilfe für dich anzubieten,als ich aber gelesen habe ,daß du aus Kaiserslautern kommst,wollte ich als FCK Fan in Sachsen,einen schönen Gruß in die weitentfernte Pfalz richten.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]