www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beschränktheit Beweisen E-Funk
Beschränktheit Beweisen E-Funk < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit Beweisen E-Funk: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Di 03.10.2006
Autor: Santus

Aufgabe
Beweisen Sie das für alle [mm] x_{1} [/mm] , [mm] x_{2} \in \IR [/mm] gilt:

[mm] e^{x_{1}+x_{2}} [/mm] = [mm] e^{x_{1}} \* e^{x_{2}} [/mm]

Ich habe keine Ahnung, wie ich an die Aufgabe rangehen soll. Habe mittlerweile seit 5 Jahre kein Mathe mehr gehabt. Bin dankbar über jede Hilfe.
Ich bräuchte erstmal nen Lösungsansatz. Vielleicht komm ich dann selber weiter.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beschränktheit Beweisen E-Funk: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Di 03.10.2006
Autor: felixf

Hallo!

> Beweisen Sie das für alle [mm]x_{1}[/mm] , [mm]x_{2} \in \IR[/mm] gilt:
>  
> [mm]e^{x_{1}+x_{2}}[/mm] = [mm]e^{x_{1}} \* e^{x_{2}}[/mm]
>  Ich habe keine
> Ahnung, wie ich an die Aufgabe rangehen soll. Habe
> mittlerweile seit 5 Jahre kein Mathe mehr gehabt. Bin
> dankbar über jede Hilfe.
>  Ich bräuchte erstmal nen Lösungsansatz. Vielleicht komm
> ich dann selber weiter.

Du brauchst:
* die Cauchysche Produktformel fuer absolut konvergente Reihen,
* den Binomischen Lehrsatz,
* die Definition der Binomialkoeffizienten.

Sagt dir das was?

Wenn ja, fang doch mal mit der rechten Seite an, also mit [mm] $e^{x_1} e^{x_2}$. [/mm] Setze die Reihe fuer [mm] $e^x$ [/mm] ein, rechne das zu einer Reihe (mit endlicher Summe innendrin) um mittels der Cauchyschen Formel, und versuche dann auf die innere Summe den Binomischen Lehrsatz anzuwenden. Vielleicht hilft es dir, wenn du auch die linke Seite (also [mm] $e^{x_1+x_2}$) [/mm] hinschreibst und diese mit Hilfe des Binomischen Lehrsatzes vereinfachst. Dann siehst du wie du beide Seiten gleich bekommst.

Wenn du nicht weiterkommst, schreib doch mal hier hin was du hinbekommen hast.

LG Felix


PS: Was hat das ganze eigentlich mit Beschraenktheit zu tun?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]