www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Beschränktheit -> Konvergenz
Beschränktheit -> Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit -> Konvergenz: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 01:32 Mi 29.12.2004
Autor: dancingestrella

Hallo,

bevor ich endgültig ich mein warmes Bett verschwinde eine Verständnisfrage:

dazu eine

DEFINITION
Eine Folge reeller Zahlen in einen metrischen Raum (M,d) heißt beschränkt, wenn es ein K [mm] \in [/mm] M gibt, so dass für alle Folgenglieder x,y  gilt:

   d(x,y) < K.


Angenommen ich zeige, dass für eine Folge [mm] (b_{n}, [/mm] n [mm] \in \IN) [/mm] gilt:
[mm] b_n [/mm] - [mm] b_n+1 [/mm] < 0
also wächst [mm] (b_{n}) [/mm] streng monoton.

Da wir uns in [mm] \IR [/mm] befinden könnte man ja eigentlich auch schreiben:
[mm] d(b_{n}, b_{n+1}) [/mm] < 0

Da 0 [mm] \in \IR, [/mm] habe ich auch gleich die Beschränktheit mitgezeigt???
Das würde ja suggerieren, dass immer wenn Folgen streng monoton sind, sie auch konvergieren, oder? Hilfe...
Irgendwas kann da nicht stimmen! Wo liegt mein Denkfehler?

gute nacht,
dancingestrella

        
Bezug
Beschränktheit -> Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 29.12.2004
Autor: Clemens

Hallo!

> DEFINITION
>  Eine Folge reeller Zahlen in einen metrischen Raum (M,d)
> heißt beschränkt, wenn es ein K [mm]\in[/mm] M gibt, so dass für
> alle Folgenglieder x,y  gilt:
>  
> d(x,y) < K.
>  
>
> Angenommen ich zeige, dass für eine Folge [mm](b_{n},[/mm] n [mm]\in \IN)[/mm]
> gilt:
>  [mm]b_n[/mm] - [mm]b_n+1[/mm] < 0
>  also wächst [mm](b_{n})[/mm] streng monoton.

Richtig

> Da wir uns in [mm]\IR[/mm] befinden könnte man ja eigentlich auch
> schreiben:
>  [mm]d(b_{n}, b_{n+1})[/mm] < 0

Wenn du auf R eine Metrik d definierst, dann muss sie natürlich auch die Eigenschaften einer Metrik haben, z. b. positive Definitheit, d. h. für alle x, y [mm] \in \IR [/mm] gilt d(x,y) [mm] \ge [/mm] 0 und d(x,y) = 0 [mm] \gdw [/mm] x = y.

Wenn du mit d die gewöhnliche Abstandsfunktion, also d(x,y) := |x - y| und |x - y| = x - y, wenn x > y und |x - y| = y - x sonst, bezeichnest, dann musst du ja aus [mm] b_{n} [/mm] - [mm] b_{n+1} [/mm] < 0 folgern, dass [mm] b_{n} \not= b_{n+1} [/mm] und damit [mm] d(b_{n},b_{n+1}) [/mm] > 0 für alle n.

> Da 0 [mm]\in \IR,[/mm] habe ich auch gleich die Beschränktheit
> mitgezeigt???

Nein, denn erstens hast du ja oben einen Fehler gemacht, aber zweitens hast du ja nur über die Abstände benachbarter Folgenglieder gesprochen und nicht über den Abstand zwischen zwei beliebigen Folgengliedern. Ein Beispiel zur Erhellung:
[mm] b_{n} [/mm] = n.
Es gilt offensichtlich [mm] d(b_{n},b_{n+1}) [/mm] = 1 < 2. Dann ist die 2 aber kein K, wie in der Definition von Beschränktheit gefordert, denn [mm] d(b_{4},b_{1}) [/mm] > 2. Man muss jedes Folgenglied mit jedem vergleichen und nicht nur benachbarte. Diese Folge ist zum Beispiel unbeschränkt. Denn ein gedachtes K wird sofort durch [mm] d(b_{1},b_{K + 2}) [/mm] = K + 1 > K widerlegt.

Gruß Clemens


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]