www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beschränktheit
Beschränktheit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Di 05.09.2006
Autor: Barncle

Hallo! :)

So erstmal eine Definition:

Sei f ein lineares Funktional auf dem normierten Raum (V, [mm] \parallel [/mm] * [mm] \parallel) [/mm]

f heißt beschränkt, wenn es ein K > 0 gibt mit |f(x)| [mm] \le K\parallel [/mm] x [mm] \parallel [/mm]

und noch ein Satz:

Ein lineares Funktional ist genau dann stetig, wenn es beschränkt ist.

Nun das ganze gilt übrigens auf noch für lineare Operatoren.
Und jetzt zu meiner Frage! Warum ist f stetig, wenn beschränkt?
ICh kann mir das ganze nicht wircklich vorstellen.

Eigentlich glaub ich auch, dass ich ein f gefunden hab, bei dem das nicht gilt, aba wahrscheinlich hab ich an dem Begriff lineares Funktional was nicht verstahden oder ähnliches.

Auf jeden Fall kann ich doch eine Funktion definieren als:

[mm] f(x)=\begin{cases} 0, & \mbox{für } \mbox{ x < 0} \\ 1, & \mbox{für } \mbox{ x > 0} \end{cases} [/mm]

nunja.. jetzt hab ich da doch ind K = 1 für das obiges gilt... und f ist nicht stetig.. aba doch beschränkt... zumindes wenn man die norm von x als Betrag interpretiert....

Ich könnte mir vorstellen, dass ich da grad einigen Blödsinn verzapft ha... vor allem weil meine Funktion aus dem [mm] R^2 [/mm] ist... naja.. und der ganze Rest nur für höherdimensionales.. aba wie auch immer ich bitte um Hilfe! ;)

Hab diese Frage natürlich nirgends anders gestellt


        
Bezug
Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Di 05.09.2006
Autor: mathiash

Hallo und guten Tag,

um es kurz zu machen: Ein beschränktes f ist stetig, weil bei [mm] y\to [/mm] x die Norm von y-x gegen 0 konvergiert
(d.h. die Normabbildung ist stetig).

Gruss,

Mathias

Bezug
                
Bezug
Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Di 05.09.2006
Autor: Barncle

Hmm.. das hilft mir leider beim verständniss nicht sonderlich! :(

Geht das vielleicht auch genauer.. bisschen bildlicher (ich weiß MAthe und bildlich geht nicht immer)

und was genau ist mit y --> x gemeint?

Ich weiß dass is vielleicht bissi zeitaufwendig... aba ich checks nicht! :(

Bezug
                        
Bezug
Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Di 05.09.2006
Autor: mathiash

Hallo nochmal,

ok, es gilt also [mm] f(x)\leq K\cdot [/mm] |x|,

wobei |x| der Einfachheit halber die Norm von x bezeichne, ok ?

Dann ist die Frage: Gilt für jedes x [mm] (x\in [/mm] ''Normierter Raum''  ;-) )

[mm] \lim_{|y-x|\to 0}|f(y)-f(x)|=0 [/mm] ?

Nun, es gilt

[mm] |f(y)-f(x)|=|f(y-x)|\leq K\cdot |y-x|\:\: \to [/mm] 0 [mm] \:\: (y\to [/mm] x)

Dabei heisst allgemein [mm] ''\lim_{|y-x|\to 0}|f(y-x)|=0'', [/mm]

dass für jede Folge [mm] y_n,n\in \IN [/mm] von Elementen des normierten Raumes mit der Eigenschaft [mm] \lim_{n\to\infty}|y_n-x|=0 [/mm]

auch [mm] \lim_{n\to\infty}|f(y_n-x)|=0 [/mm] gilt.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]