www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Beschränkte Teilmengen
Beschränkte Teilmengen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränkte Teilmengen: Tipp,Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:42 Fr 26.11.2010
Autor: wonda

Aufgabe
Es seien A und B nicht leere, nach oben und unten beschränkte Teilmengen von [mm] \IR. [/mm]
Zeige, dass die Menge:

C := [mm] \{ x : x = y + z mit y \in A und z \in B \} [/mm]

nach oben und unten beschränkt ist und dass gilt:

supC = supA + supB sowie inf C = inf A + inf B:


nun stell ich mir Folgende Frage wie zeige ich das ganze
für mich ist das ganz schon einleuchtend
da die Komposition von nicht leeren, beschränkten Mengen wieder nicht leer und beschränkt sein müssen
das zeigen ist aber für mich das schwere
ich würde das ganze wiefolge zeigen bin mir dabei aber nicht sicher ob es zu 100% stimmt

sagen wir einfach
A ist nicht leer, nach oben und unten beschränkt
nach der Definition der Beschränktheit gilt:

Also Sei Sup A=: M dann
[mm] \exists [/mm] M [mm] \in [/mm] A [mm] \forall [/mm] y [mm] \in [/mm] A : y [mm] \le [/mm] M

das gleiche gilt dann für B
wobei Sup B=:K nun
[mm] \exists [/mm] K [mm] \in [/mm] B [mm] \forall [/mm] z [mm] \in [/mm] B : z [mm] \le [/mm] K


Sei nun x [mm] \in [/mm] C dann x= y + z [mm] \le \underbrace{K+M}_{=:L} [/mm] also x [mm] \le [/mm] L
damit ist Sup C= L =Sup A + Sup B

analog dann für Inf C
(habe einfach _{2} an die Schranken gemacht damit die zeichen gleich bleiben für das verständnis mir ist klar das [mm] M\not= M_{2} [/mm]
aber  für |x| [mm] \ge [/mm] M ist [mm] M=M_{2}) [/mm]

Also Sei Inf A=: [mm] M_{2} [/mm] dann
[mm] \exists [/mm] M [mm] \in [/mm] A [mm] \forall [/mm] y [mm] \in [/mm] A : y [mm] \ge M_{2} [/mm]

analog für B:
Sei Inf [mm] B=:K_{2} [/mm]
[mm] \exists [/mm] K [mm] \in [/mm] B [mm] \forall [/mm] z [mm] \in [/mm] B : z [mm] \ge K_{2} [/mm]


also
x= y+z [mm] \ge \underbrace{K_{2}+M_{2}}_{=:L_{2}} [/mm] also x [mm] \le L_{2} [/mm]
das nichts anderes als Inf C= Inf A + Inf B ist
damit wäre C beschränkt
C ist natürlich auch nicht leer da C aus den Mengen A und B besteht die nicht leer sind

wäre sehr dankbar für verbesserungen oder falls mein Beiweis total falsch ist für Beweisansätze wie man es hätte machen sollen

Mfg wonda

        
Bezug
Beschränkte Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Fr 26.11.2010
Autor: Gonozal_IX

Hiho,


  

> Also Sei Sup A=: M dann
>  [mm]\exists[/mm] M [mm]\in[/mm] A [mm]\forall[/mm] y [mm]\in[/mm] A : y [mm]\le[/mm] M
>  
> das gleiche gilt dann für B
>  wobei Sup B=:K nun
> [mm]\exists[/mm] K [mm]\in[/mm] B [mm]\forall[/mm] z [mm]\in[/mm] B : z [mm]\le[/mm] K
>  
>
> Sei nun x [mm]\in[/mm] C dann x= y + z [mm]\le \underbrace{K+M}_{=:L}[/mm]
> also x [mm]\le[/mm] L

ja, bis hierhin prima.

> damit ist Sup C= L =Sup A + Sup B

Nunja, DAS hast du noch nicht gezeigt. Du hast zwar gezeigt, dass L eine obere Schranke ist, du hast aber noch nicht gezeigt, dass es auch die kleinste obere Schranke ist.
Dafür fehlt noch die zweite Supremumseigenschaft.
Das ist aber auch nicht schwer.

> Also Sei Inf A=: [mm]M_{2}[/mm] dann
>  [mm]\exists[/mm] M [mm]\in[/mm] A [mm]\forall[/mm] y [mm]\in[/mm] A : y [mm]\ge M_{2}[/mm]
>  
> analog für B:
>  Sei Inf [mm]B=:K_{2}[/mm]
> [mm]\exists[/mm] K [mm]\in[/mm] B [mm]\forall[/mm] z [mm]\in[/mm] B : z [mm]\ge K_{2}[/mm]
>  
>
> also
> x= y+z [mm]\ge \underbrace{K_{2}+M_{2}}_{=:L_{2}}[/mm] also x [mm]\le L_{2}[/mm]

Hier sollte es am Ende wohl eher $x [mm] \ge L_2$ [/mm] heissen.

Deine Idee ist gut, aber bei beiden fehlt noch die wichtige Supremums- bzw Infimumseigenschaft.
Denn obere und untere Schranken gibts ja viele ;-)

MFG,
Gono

Bezug
                
Bezug
Beschränkte Teilmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Fr 26.11.2010
Autor: wonda

ohje wenn man sich mal arbeit ersparen will vergisst man das Zeichen umzudrehen ja natürlich meinte ich [mm] \ge [/mm] danke


hmm versteh nicht ganz wieso ich das noch zeigen muss
ich habe mir doch L genauso definiert dass
L=K+ M= Sup A +Sup B
andersherum ist doch aber C so definiert dass
[mm] \forall [/mm] x [mm] \in [/mm] C : x= y+z ,wobei [mm] y\in [/mm] A und z [mm] \in [/mm] B
wenn man jetzte also L= Sup A +Sup B muss L doch das Supremum von C sein
da es aber kein y [mm] \in [/mm] A für das gilt: [mm] y\le [/mm] K(also Sup A)
analog für B
muss L doch Sup C sein

wenn das nicht ausreicht könntest du mir sagen was ich noch zeigen muss?

Danke schonmal


Bezug
                        
Bezug
Beschränkte Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Fr 26.11.2010
Autor: Gonozal_IX

Hiho,

> hmm versteh nicht ganz wieso ich das noch zeigen muss

Weil das gerade die Aufgabe ist ;-)

> ich habe mir doch L genauso definiert dass
>  L=K+ M= Sup A +Sup B

Jo, damit ist L erstmal irgendeine relle Zahl.

>  andersherum ist doch aber C so definiert dass
>  [mm]\forall[/mm] x [mm]\in[/mm] C : x= y+z ,wobei [mm]y\in[/mm] A und z [mm]\in[/mm] B

>  wenn man jetzte also L= Sup A +Sup B muss L doch das
> Supremum von C sein

Das ist doch genau die Aussage der Aufgabe. Ich behaupte nun, dass es eben nicht so ist. Wer von uns beiden hat recht?

> da es aber kein y [mm]\in[/mm] A für das gilt: [mm]y\le[/mm] K(also Sup A)
>  analog für B
>  muss L doch Sup C sein

Wenn dir das so klar ist, sollte es ja auch kein Problem sein zu zeigen.

Die Sache ist eigentlich ganz einfach.
Es wird in den Raum geworfen: "Addiere" ich zwei Mengen, so ist das Supremum der Summe gerade die Summe der Suprema..... das ist aber ohne Beweis so gar nicht direkt klar.
Du wirst vllt. feststellen, dass sich gerade im späteren Verlauf eines Studiums desöfteren Aussagen ergeben, die "eigentlich doch klar" aber gar nicht so trivial sind, wie sie scheinen ;-)

MFG
Gono.

PS: Achja, was sollst du zeigen: Für alle Epsilon.... und so weiter. Kennst du bestimmt die Definition :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]