www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Berührpunkte bestimmen
Berührpunkte bestimmen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunkte bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:51 So 24.02.2008
Autor: Theoretix

Aufgabe
Gegeben ist die Funktion [mm] f(x)=x^{3}-2x^{2}+1 [/mm] und der Punkt P(1/1).
Bestimmme die Tangente, die durch P an f verläuft und ihre Berührpunkte.

Hallo zusammen,
ich komm grade nicht weiter.
Die Ableitung der Funktion ist ja schonmal:
f [mm] '(x)=3x^{2}-4x [/mm]
man weiß ja, dass die Tangente durch P(1/1) gehen soll, also kann man ja
in y=mx+c einsetzen: 1=1m+c...und jetzt hat man wieder 2 variable...
ich weiß grade absolut nicht wie man diese aufgabe lösen kann...
wäre schön, wenn mir jemand helfen könnte!
danke im vorraus!mfg

        
Bezug
Berührpunkte bestimmen: Tangentengleichung
Status: (Antwort) fertig Status 
Datum: 00:05 Mo 25.02.2008
Autor: Loddar

Hallo Theoretix!


Verwende hier die allgemeine Form der Tangentengleichung mit:

$$y \ = \ [mm] f'(x_0)*(x-x_0)+f(x_0)$$ [/mm]

Dabei gilt hier: [mm] $x_0$ [/mm] = Berührstellen zwischen Tangente und Funktion.

Durch Einsetzen erhalten wir:

$$1 \ = \ [mm] f'(x_0)*(1-x_0)+f(x_0)$$ [/mm]
$$1 \ = \ [mm] \left(3*x_0^2-4*x_0\right)*(1-x_0)+\left(x_0^3-2*x_0^2+1\right)$$ [/mm]
Nun nach [mm] $x_0 [/mm] \  = \ ...$ umstellen.


Gruß
Loddar


Bezug
                
Bezug
Berührpunkte bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:15 Mo 25.02.2008
Autor: Theoretix

dankeschön, wunderbar dass du du dich so schnell drum gekümmert hast!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]