www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Berührpunktansatz
Berührpunktansatz < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührpunktansatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 So 30.03.2008
Autor: mary-.-

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gegeben ist die Funktion 3/50000 [mm] x^3 [/mm] - 41/625 [mm] x^2 [/mm] + 1789/50 + 15000

( / entspricht dem Bruchzeichen)

x [0;1200]

Vom Ursprung wird die Tangente an das Schaubild von K gelegt. Bestimmen Sie die Steigung der Tangente.

Also, so viel ich weiß, erhält man die Steigung in dem Berührpunkt durch die 1. Ableitung. Aber dann weiß ich nicht so recht was ich machen soll. Wir rechnen ohne der Berührpunktformel.
Hoffe es kann mir jemand sagen, wie ich diese Aufg. lösen kann.

        
Bezug
Berührpunktansatz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 So 30.03.2008
Autor: Mr._Calculus

Hallo mary,

kann es sein, dass in der Aufgabenstellung ein "x" fehlt bei [mm] \bruch{1789}{50} [/mm] ?

Für die Gerade durch den Ursprung gilt:
[mm]g(x)= m*x[/mm]

Für einen Berührpunkt muss gelten:
[mm]f(x_{0})=g(x_{0})[/mm] und
[mm]f'(x_{0})=g'(x_{0})[/mm]

Damit solltest du weiterkommen.

Gruss Mr._Calculus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]