Bernoulli Ungleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei x > 0, n > x. Zeigen Sie:
(a) Aus der Bernoulli-Ungleichung [mm] (1+y)^{n} \ge [/mm] 1 + ny (für y > -1) folgt, dass
(1- [mm] \bruch{x}{n+1})^{n+1} [/mm] / (1 - [mm] \bruch{x}{n})^{n} \ge [/mm] 1.
(b) Die Folge ((1- [mm] \bruch{x}{n})^{n})_{n \in \IN} [/mm] konvergiert. |
Kann mir da jemand helfen?? Bei der a) hab ich überhaupt keine Idee wie ich anfangen soll ....
bei der b) muss ich wahrscheinlich ein Konvergenzkriterium haben oder??
|
|
|
|
der Anfang muss heissen:
Sei x > 0, n [mm] \in \IN [/mm] mit n > x
|
|
|
|
|
Bei der a) musst du einfach nur rechnen: Schreib dir den Bruch hin und erweitere mit [mm](1- \bruch{x}{n})[/mm]. Dann hast du 2 Terme zum Exponenten (n+1). Die fasst du geschickt zusammen und bringst sie innen auf die Form [mm](1- \bruch{x}{(n+1)(n-x)})[/mm] (das geht). Jetzt Bernoulli anwenden und nochmal ausmultiplizieren, dann bist du fertig.
Zur b): Zumindest ist für jedes Folgenglied nach Bernoulli: [mm](1- \bruch{x}{n})^n \ge 1 - x[/mm]. Jetzt fehlt noch eine obere Schranke...
|
|
|
|