www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Bernoulli DGL
Bernoulli DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Fr 17.07.2009
Autor: Sachsen-Junge

Hallo liebes Team,

die DGL lautet:

[mm] y'+(x-\frac{1}{x})y+x+e^{-x^2}+y^{-1}=0. [/mm] y(1)=1

Ich habe die DGL soweit gelöst, aber ich denke meine Lösuung ist falsch.

Mein Ansatz:

[mm] z=y^2 [/mm]
z'=2*y*y' [mm] \Rightarrow y'=\frac{z'}{2y} [/mm]


Dann setze ich das ein und bekomme eine lin. DGL erster Ordnung.
Die Lösung lautet [mm] z_h(x)=\frac{x^2}{e^{x^2}}C. [/mm]

Der nächste Schritt ist die Variation der Konstanten.

Da bekomme ich für C(x) heraus  -ln(x)

Das heißt [mm] z_s(x)= -ln(x)*\frac{x^2}{e^{x^2}} [/mm]

Also

[mm] z_a(x)= z_h(x)+z_s(x)=\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}} [/mm]

das heißt

[mm] y^2=\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}} [/mm]
d.h.
[mm] y=\wurzel{\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}}} [/mm]

ich setze den Punkt ein und es gilt.

[mm] 1=\wurzel{\frac{c}{e}} \gdw1=\frac{c}{e} \rightarrow [/mm] c=e

        
Bezug
Bernoulli DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Fr 17.07.2009
Autor: wogie


> Hallo liebes Team,
>  
> die DGL lautet:
>  
> [mm]y'+(x-\frac{1}{x})y+x+e^{-x^2}+y^{-1}=0.[/mm] y(1)=1
>  
> Ich habe die DGL soweit gelöst, aber ich denke meine
> Lösuung ist falsch.
>  
> Mein Ansatz:
>  
> [mm]z=y^2[/mm]
>  z'=2*y*y' [mm]\Rightarrow y'=\frac{z'}{2y}[/mm]
>  
>
> Dann setze ich das ein und bekomme eine lin. DGL erster
> Ordnung.
>  Die Lösung lautet [mm]z_h(x)=\frac{x^2}{e^{x^2}}C.[/mm]

Bist du dir da sicher? Skizzier doch mal den Lösungsweg, da ich glaube, dass das schon falsch ist


Bezug
        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 Fr 17.07.2009
Autor: leduart

Hallo
Ich bekomme bei der Substitution keine lineare Dgl.
du hast offensichtlich mit y multipl. aber vergessen, dass dann da [mm] (x+e^{-x^2})*\wurzel{y} [/mm] steht.
Gruss leduart

Bezug
                
Bezug
Bernoulli DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Sa 18.07.2009
Autor: Sachsen-Junge

Hallo,

meine DGL war falsch. Hier die richtige:


$ [mm] y'+(x-\frac{1}{x})y+x*e^{-x^2}*y^{-1}=0. [/mm] $  | [mm] *\frac{1}{y^{-1}} [/mm]
[mm] \gdw [/mm]
[mm] \frac{y'}{y^{-1}}+(x-\frac{1}{x})\frac{y}{y^{-1}}+x*e^{-x^2}=0 [/mm]

Mein Ansatz:
[mm] z=y^2 [/mm]
z'=2y*y'

Da müsste aber eine Lineare Dgl 1.Ordnung heraus kommen...


Liebe Grüße

Bezug
                        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Sa 18.07.2009
Autor: wogie


> Hallo,
>  
> meine DGL war falsch. Hier die richtige:
>  
>
> [mm]y'+(x-\frac{1}{x})y+x*e^{-x^2}*y^{-1}=0.[/mm]  |
> [mm]*\frac{1}{y^{-1}}[/mm]
>  [mm]\gdw[/mm]
>  
> [mm]\frac{y'}{y^{-1}}+(x-\frac{1}{x})\frac{y}{y^{-1}}+x*e^{-x^2}=0[/mm]
>  
> Mein Ansatz:
>  [mm]z=y^2[/mm]
>  z'=2y*y'
>  
> Da müsste aber eine Lineare Dgl 1.Ordnung heraus
> kommen...
>  
>
> Liebe Grüße

Das stimmt auch. Die kann man dann einfach mit Trennung der Variablen lösen. Dein Ergebnis müsste stimmen. Danach Variation der Konstanten. Bis auf den Vorfaktor bei der speziellen Lösung sieht auch alles ganz gut aus.

Bezug
        
Bezug
Bernoulli DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Sa 18.07.2009
Autor: MathePower

Hallo Saschsen-Junge,

> Hallo liebes Team,
>  
> die DGL lautet:
>  
> [mm]y'+(x-\frac{1}{x})y+x+e^{-x^2}+y^{-1}=0.[/mm] y(1)=1
>  
> Ich habe die DGL soweit gelöst, aber ich denke meine
> Lösuung ist falsch.
>  
> Mein Ansatz:
>  
> [mm]z=y^2[/mm]
>  z'=2*y*y' [mm]\Rightarrow y'=\frac{z'}{2y}[/mm]
>  
>
> Dann setze ich das ein und bekomme eine lin. DGL erster
> Ordnung.
>  Die Lösung lautet [mm]z_h(x)=\frac{x^2}{e^{x^2}}C.[/mm]
>  
> Der nächste Schritt ist die Variation der Konstanten.
>  
> Da bekomme ich für C(x) heraus  -ln(x)


Da Du die DGL hier korrigiert hast,
bin ich auf [mm]C\left(x\right)=-\red{2}*\ln\left(x\right)[/mm] gekommen..


>  
> Das heißt [mm]z_s(x)= -ln(x)*\frac{x^2}{e^{x^2}}[/mm]
>  
> Also
>
> [mm]z_a(x)= z_h(x)+z_s(x)=\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}}[/mm]
>  
> das heißt
>  
> [mm]y^2=\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}}[/mm]
>  d.h.
>  [mm]y=\wurzel{\frac{x^2}{e^{x^2}}C-ln(x)*\frac{x^2}{e^{x^2}}}[/mm]
>  
> ich setze den Punkt ein und es gilt.
>  
> [mm]1=\wurzel{\frac{c}{e}} \gdw1=\frac{c}{e} \rightarrow[/mm] c=e


Die Konstante c ist richtig.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]