www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bernoulli-Verteilung, Unabhaen
Bernoulli-Verteilung, Unabhaen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli-Verteilung, Unabhaen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:53 So 11.01.2015
Autor: Melisa

Aufgabe
Es seien X und Y unabhaengige Bernoulli-verteilte Zufallsvariablen zum Parameter
[mm] p=\bruch{1}{2} [/mm]

(i) Untersuchen Sie, ob X + Y und |X − Y | unkorreliert und/ oder unabhaengig sind.
(ii) Fur alle [mm] \delta \in [/mm] [−1, 1] sei Z := [mm] \delta [/mm] * X + [mm] \wurzel{1-\delta^2} [/mm] * Y. Berechnen Sie Corr(X,Z)


Hallo an Alle,
hab die Aufgabe zu loesen und braeuchte Ihre Hilfe :)

zu (i)
Cov(X+Y, |X-Y|) = Cov(X,X) - Cov(X,Y) + Cov(Y,X) - Cov(Y,Y) = 0 => unkorreliert.

Seien X+Y = 0 und |X-Y| = 1 =>  P(X+Y = 0, |X-Y| = 1) = 0 [mm] \not= \bruch{1}{2}(1-\bruch{1}{2})^3 [/mm] = P(X+Y =0)*P(|X-Y| = 1) => nicht unabhaengig

Ist es korrekt??

zu(ii)
Ich weiss es gar nicht, mit was ich anfangen soll. Vielleicht koennt Ihr mir einen Tipp geben

Liebe Gruesse,
Melisa

        
Bezug
Bernoulli-Verteilung, Unabhaen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:40 So 11.01.2015
Autor: luis52


>  hab die Aufgabe zu loesen und braeuchte Ihre Hilfe :)
>  
> zu (i)
>  Cov(X+Y, |X-Y|) = Cov(X,X) - Cov(X,Y) + Cov(Y,X) -
> Cov(Y,Y) = 0 => unkorreliert.

Moin Melisa, die von dir verwandte Formel der Kovarianz ist nicht korrekt.

>  
> Seien X+Y = 0 und |X-Y| = 1 =>  P(X+Y = 0, |X-Y| = 1) = 0

> [mm]\not= \bruch{1}{2}(1-\bruch{1}{2})^3[/mm] = P(X+Y =0)*P(|X-Y| =
> 1) => nicht unabhaengig
>  
> Ist es korrekt??



*Ich* rechne so $P(X+Y = 0, |X-Y| = 1) = [mm] 0\ne\frac{1}{4}\cdot\frac{1}{2}= [/mm] P(X+Y = [mm] 0)\cdot [/mm] P( |X-Y| = 1)$




>  
> zu(ii)
>  Ich weiss es gar nicht, mit was ich anfangen soll.
> Vielleicht koennt Ihr mir einen Tipp geben


Bitte  ueberarbeite mal die Aufgabemstellung: Vermutlich ist $Z := [mm] \delta \cdot [/mm] X +  [mm] \wurzel{1-\delta^2}\red{Y}$ [/mm] und $Cov[X,Y]$ wurde schon in (i) bestimmt.

Bezug
                
Bezug
Bernoulli-Verteilung, Unabhaen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:10 So 11.01.2015
Autor: Melisa

Hallo luis52,
Und vielen Dank.

Kannst du mir bitte sagen, warum die Kovarianz-Formel nicht korrekt ist oder wo ich Fehler mache??

(Teilaufgabe (ii) habe ich schon korrigiert :) )

LG,
Melisa

Bezug
                        
Bezug
Bernoulli-Verteilung, Unabhaen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 So 11.01.2015
Autor: luis52


> Hallo luis52,
>  Und vielen Dank.

Gerne.

>  
> Kannst du mir bitte sagen, warum die Kovarianz-Formel nicht
> korrekt ist oder wo ich Fehler mache??

Mit dem Betrag muss man bekanntlich immer sehr vorsichtig umgehen. Bessser ist es, mittels der gemeinsamen Wahrscheinlichkeitsfunktion von $X+Y$ und $|X=Y|$ die Kovarianz zu berechnen.



Bezug
                                
Bezug
Bernoulli-Verteilung, Unabhaen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 So 11.01.2015
Autor: Melisa

jetzt habe ich aber Verständnisproblem, warum |X=Y| und nicht |X-Y|

Bezug
                                        
Bezug
Bernoulli-Verteilung, Unabhaen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 So 11.01.2015
Autor: luis52


> jetzt habe ich aber Verständnisproblem, warum |X=Y| und
> nicht |X-Y|

Weil =-Zeichen so nahe am --Zeichen angesiedelt ist;-). Ich meinte natuerlich $|X-Y| $.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]