www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Bernoulli-Experiment unabh.
Bernoulli-Experiment unabh. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli-Experiment unabh.: Beweis
Status: (Frage) beantwortet Status 
Datum: 00:10 Do 18.04.2013
Autor: mathestudent111

Hallo Leute,

wie in der Überschrift schon steht, habe ich gerade Schwierigkeiten zu beweisen dass das Bernoulli-Experiment unabhängig ist.

Als Idee:
Ich nehme mir die Def. der Unabhängigkeit einer Familie [mm] (A_{i})_{i \in I}: [/mm]
P( [mm] \bigcap_{i \in J} A_{i} [/mm] ) = [mm] \produkt_{i \in J} P(A_{i}) [/mm] für jede Teilmenge J von I.

[mm] A_{i} [/mm] = { w [mm] \in [/mm] Omega : [mm] w_{i}=1 [/mm] } war vorgeben. Also i-tes Spiel hat Erfolg für jedes i = 1,.... n

Dann kann ich es doch mit Induktion über n beweisen oder?


Ich hatte dan schon angefangen, aber stecke im letzten Schritt fest.
IA n=1 passt.
IV Beh. korrekt für ein bel. aber festes n

IS
P( [mm] \bigcap_{i \in {1,...,n+1} } A_{i} [/mm] ) = ... = [mm] \summe_{i \in {1,..,n} } [/mm] P(  [mm] A_{i} \cap A_{n+1} [/mm] ) = ???  Wie komme ich jetzt weiter?


Danke schonmal für die Hilfe.
LG



        
Bezug
Bernoulli-Experiment unabh.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:30 Do 18.04.2013
Autor: luis52

Moin, bitte formuliere deine Frage etwas exakter.


> Als Idee:
>  Ich nehme mir die Def. der Unabhängigkeit einer Familie
> [mm](A_{i})_{i \in I}:[/mm]  P( [mm]\bigcap_{i \in J} A_{i}[/mm] ) =  [mm]\produkt_{i \in J} P(A_{i})[/mm] für jede Teilmenge J von I.

... fuer jede *endliche* Teilmenge $J_$ von $I_$.

>  
> [mm] $A_{i} [/mm] = [mm] \{ w \in Omega : w_{i}=1\}$ [/mm]  war vorgeben.

Was ist [mm] \Omega$? [/mm] Ist [mm] $A_{i}= \{ w_i \in\Omega : w_{i}=1\}$ [/mm] gemeint? Im letzteren Fall ist [mm] $A_i=\{1\}$. [/mm]

Ich *vermute* dass [mm] $\Omega$ [/mm] endlich ist und geschrieben werden kann [mm] $\Omega=\{(w_1,\dots,w_n)\mid w_i=0\text{ oder }1\}$ [/mm] und [mm] $A_i=\{w\in\Omega\mid w_i=1 \text{ und } w_j=0\text{ fuer } j\ne i\}$. [/mm] Aber je mehr ich daruber nachdenke macht   [mm] $A_i=\{w\in\Omega\mid w_i=1\}$ [/mm] mehr Sinn, was deiner Vorgabe entspricht.

Welche [mm] $\sigma$-Algebra [/mm] wird betrachtet? Ist etwas zu [mm] $P(\{w\})$, $w\in\Omega$, [/mm] gesagt?

Ich denke, es waere gut, wenn du den genauen Wortlaut dessen aufschreibst, was du zeigen willst. (Ich bin schon etwas angefressen, dermassen im Nebel stochern zu muessen!)

vg Luis

Bezug
                
Bezug
Bernoulli-Experiment unabh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:22 Do 18.04.2013
Autor: mathestudent111

Ja stimmt. du hattest recht. tut mir leid nochmal.
Aber ich hab das jetzt gelöst. Trz danke nochmal

Bezug
                        
Bezug
Bernoulli-Experiment unabh.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Do 18.04.2013
Autor: luis52


>  Aber ich hab das jetzt gelöst

Solche Fragen sind mir die liebsten. ;-)

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]