www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Bernoulli-Dgl
Bernoulli-Dgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli-Dgl: tipp
Status: (Frage) beantwortet Status 
Datum: 13:45 So 22.06.2014
Autor: arbeitsamt

Aufgabe
a) Löse durch Substitution:

[mm] x`+2t^2x=2t^2x^3 [/mm] mit x(0)=2

b) Als verbessertes Modell für Populationswachstum kann man

[mm] x`=\gammax(1-(\bruch{x}{K})^\nu) [/mm] mit [mm] x(0)=x_0 [/mm]

mit einem Parameter [mm] \nu>1 [/mm] für Wirbeltiere bzw. 0 < [mm] \nu \le [/mm] 1 für wirbellose Tiere betrachten. Lösen Sie dieses AWP in Abhängigkeit von [mm] \nu [/mm]

a) [mm] x'+2t^2x=2t^2x^3 [/mm] mit x(0)=2

zu bernoulli dgl gibt es den folgenden ansatz:

[mm] \alpha=3 [/mm]

[mm] u(t)=x^{1-\alpha}=x^{-2} [/mm]

wie mache ich weiter? die ableitung von u(t) hilft mir nicht weiter

[mm] u`(t)=-2x^{-3} [/mm]

        
Bezug
Bernoulli-Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 So 22.06.2014
Autor: MathePower

Hallo arbeitsamt,

> a) Löse durch Substitution:
>  
> [mm]x'+2t^2x=2t^2x^3[/mm] mit x(0)=2
>  
> b) Als verbessertes Modell für Populationswachstum kann
> man
>
> [mm]x'=\gammax(1-(\bruch{x}{K})^\nu)[/mm] mit [mm]x(0)=x_0[/mm]
>  
> mit einem Parameter [mm]\nu>1[/mm] für Wirbeltiere bzw. 0 < [mm]\nu \le[/mm]
> 1 für wirbellose Tiere betrachten. Lösen Sie dieses AWP
> in Abhängigkeit von [mm]\nu[/mm]
>  a) [mm]x'+2t^2x=2t^2x^3[/mm] mit x(0)=2
>  
> zu bernoulli dgl gibt es den folgenden ansatz:
>  
> [mm]\alpha=3[/mm]
>  
> [mm]u(t)=x^{1-\alpha}=x^{-2}[/mm]
>  
> wie mache ich weiter? die ableitung von u(t) hilft mir
> nicht weiter
>  
> [mm]u'(t)=-2x^{-3}[/mm]  


Nach der Kettenregel fehlt hier die innere Ableitung: x'.

Daher

[mm]u'(t)=-2x^{-3}*\red{x'}[/mm]  

Jetzt musst Du die Substitution nach x umstellen.
Dann kannst Du das hier einsetzen.


Gruss
MathePower

Bezug
                
Bezug
Bernoulli-Dgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 So 22.06.2014
Autor: arbeitsamt


> Nach der Kettenregel fehlt hier die innere Ableitung: x'.

Kettenregel? ich habe [mm] u(t)=x^{-2} [/mm] mit der potenzregel abgeleitet. die funktion ist auch nicht verkettet. woher kommt nun die innere ableitung?

ps: die seite lädt bei mir zur zeit sehr langsam. ist das bei dir auch so?



Bezug
                        
Bezug
Bernoulli-Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 22.06.2014
Autor: MathePower

Hallo arbeitsamt,

> > Nach der Kettenregel fehlt hier die innere Ableitung: x'.
>  
> Kettenregel? ich habe [mm]u(t)=x^{-2}[/mm] mit der potenzregel
> abgeleitet. die funktion ist auch nicht verkettet. woher
> kommt nun die innere ableitung?
>  


x ist die gesuchte Funktion, ist also von t abhängig.


> ps: die seite lädt bei mir zur zeit sehr langsam. ist das
> bei dir auch so?
>  


Ja, das ist zur Zeit auch bei mir so.


Gruss
MathePower

Bezug
        
Bezug
Bernoulli-Dgl: aufg. b)
Status: (Frage) beantwortet Status 
Datum: 20:19 So 22.06.2014
Autor: arbeitsamt

In der aufgabenstellung wird die funktion nicht richtig angezeigt.

richtig wäre:

[mm] x'=\gamma* x(1-(\bruch{x}{K})^\nu) [/mm]


[mm] \gamma [/mm] ist ebenfalls ein paramter oder (wird in der ufgabenstellung nicht erwähnt)?

kann ich die dgl ohne substitution, sondern mit trennung der variabel lösen?

[mm] \integral{\bruch{1}{x(1-(\bruch{x}{K})^\nu)} dx}=\integral{\gamma dt} [/mm]

ist das so richtig?

Bezug
                
Bezug
Bernoulli-Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 So 22.06.2014
Autor: MathePower

Hallo arbeitsamt,

> In der aufgabenstellung wird die funktion nicht richtig
> angezeigt.
>
> richtig wäre:
>  
> [mm]x'=\gamma* x(1-(\bruch{x}{K})^\nu)[/mm]
>  
>
> [mm]\gamma[/mm] ist ebenfalls ein paramter oder (wird in der
> ufgabenstellung nicht erwähnt)?
>  
> kann ich die dgl ohne substitution, sondern mit trennung
> der variabel lösen?
>  


Das kann sein.


> [mm]\integral{\bruch{1}{x(1-(\bruch{x}{K})^\nu)} dx}=\integral{\gamma dt}[/mm]
>  
> ist das so richtig?


Ja.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]