www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Bernoulli-Aufgabe
Bernoulli-Aufgabe < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bernoulli-Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 So 07.05.2006
Autor: Minachan

Aufgabe
In einer Jahrgangsstufe 12 gibt es 80 Mädchen und 70 Jungen.6 Freikarten werden verlost.
a) Nach der Ziehung wird der Schüler wieder zurückgelegt.
b)Jeder Schüler erhält höchstens eine Karte. (ohne zurücklegen)

Wie hoch ist die Wahrscheinlichkeit, dass genau drei Jungen eine Karte erhalten?

Hi!
Mit oben genannter Aufgabe komme ich irgendwie nicht klar.

Kann mir jemand von euch sagen, wie man die Wahrscheinlichkeit hier rausbekommen kann? Freue mich über jede Antwort, lg, Mina

        
Bezug
Bernoulli-Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 So 07.05.2006
Autor: Disap

Hallo Minachan.

> In einer Jahrgangsstufe 12 gibt es 80 Mädchen und 70
> Jungen.6 Freikarten werden verlost.
> a) Nach der Ziehung wird der Schüler wieder zurückgelegt.

Ich gehe davon aus, ein Junge, der z. B. zwei Karten bekommt, dann auch als '2' Jungen gewertet wird.

> Wie hoch ist die Wahrscheinlichkeit, dass genau drei Jungen
> eine Karte erhalten?

In diesem Fall handelt es sich tatsächlich um einen Bernoulli Versuch. Es gibt insgesamt 150 Menschen, die die Schule besuchen. Die Wahrscheinlichkeit für [mm] p("Junge")=\br{70}{150}; p("Maedchen")=\br{80}{150} [/mm]

Bernoulli-Versuch:

p("genau drei Jungen") = [mm] \vektor{6\\3}*(\br{70}{150})^3*(\br{80}{150})^3 [/mm]

Man hat 6 'Gewinne' zu vergeben und davon gehen genau drei an Jungen [mm] ((\br{70}{150})^3) [/mm]

> b)Jeder Schüler erhält höchstens eine Karte. (ohne
> zurücklegen)
>
> Wie hoch ist die Wahrscheinlichkeit, dass genau drei Jungen
> eine Karte erhalten?

Stichwort - Baumdiagramm...
Es hilft, sich erst einmal aufzuschreiben, welche (Ereignisse) Fälle es gibt
E = { (J, J, J, M, M, M) ,  (J, J, M, J, M, M),...(M, M, M, J, J, J) }

Insgesamt gibt es hierfür 6! verschiedene Möglichkeiten. Die Wahrscheinlichkeit für eines dieser Ereignisse ist

p(drei Jungen, dann drei Maedchen) [mm] =$\br{70}{150}*\br{69}{149}*\br{68}{148}*\br{80}{147}*\br{79}{146}*\br{78}{145}$ [/mm]

Unsere gesuchte Wahrscheinlichkeit

$p("...")=6!*p(drei Jungen, dann drei Maedchen)$

Alles klar?

LG
Disap


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]