www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Bereichsintegral
Bereichsintegral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bereichsintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 14.07.2008
Autor: tresen

Aufgabe
Berechnen Sie den Inhalt des Flächenstücks [mm]S= \{ (x,y,z)/z=xy, x^2+y^2 \le 1 \} [/mm]!

ich komme irgendwie auf 0. rauskommen sollte [mm] \bruch{2 \pi}{3} (2* \wurzel{2} - 1 )[/mm]

meine lösung:

[mm]I = \integral_B{f(x,y) dB} [/mm]     [mm]f(x,y)=z=xy[/mm]

[mm]x=r \cos (\varphi)[/mm]
[mm]y=r \sin (\varphi)[/mm]
[mm]dB=r drd\varphi[/mm]

[mm]f(r,\varphi)=r^2 \cos(\varphi)\sin (\varphi)[/mm]

[mm]I = \integral_{\varphi=0}^{2\pi}{\integral_{r=0}^{1}{f(r,\varphi)r dr} d\varphi} = \integral_{\varphi=0}^{2\pi}{\integral_{r=0}^{1}{r^3 * \cos (\varphi)*\sin (\varphi) dr} d\varphi=0} [/mm]




        
Bezug
Bereichsintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:43 Mo 14.07.2008
Autor: Leopold_Gast

Das von dir aufgestellte Integral hat in der Tat den Wert 0. Es wäre nur die Frage, ob du das überhaupt berechnen sollst. Es ist ja in der Aufgabe von einem "Flächenstück" die Rede. Vielleicht sollst du ja den Flächeninhalt des Graphen der Funktion

[mm]z = f(x,y) = xy[/mm]

über dem Kreis [mm]x^2 + y^2 \leq 1[/mm] berechnen. In Deinem Integral hast du dagegen einen Rauminhalt berechnet. Da aber genauso viele Raumteile unterhalb der Ebene [mm]z=0[/mm] wie oberhalb liegen, heben sich diese gegenseitig weg, so daß sich in der Summe der Wert 0 ergibt.

Bezug
                
Bezug
Bereichsintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Mo 14.07.2008
Autor: tresen


> Das von dir aufgestellte Integral hat in der Tat den Wert
> 0. Es wäre nur die Frage, ob du das überhaupt berechnen
> sollst. Es ist ja in der Aufgabe von einem "Flächenstück"
> die Rede. Vielleicht sollst du ja den Flächeninhalt des
> Graphen der Funktion
>  
> [mm]z = f(x,y) = xy[/mm]
>  
> über dem Kreis [mm]x^2 + y^2 \leq 1[/mm] berechnen.

Wie mache ich das??

Bezug
                        
Bezug
Bereichsintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Mo 14.07.2008
Autor: Leopold_Gast

Das Flächenelement [mm]\mathrm{d}o[/mm] (auch mit [mm]\mathrm{d} \sigma[/mm] oder [mm]\mathrm{d}S[/mm] bezeichnet) für eine durch

[mm](x,y,z) = \varphi(u,v) \ \ \text{mit} \ \ (u,v) \in B[/mm]

parametrisierte Fläche [mm]\mathfrak{F}[/mm] ist

[mm]\mathrm{d}o = \left| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right| ~ \mathrm{d}(u,v)[/mm]

Die senkrechten Striche bedeuten dabei die euklidische Länge, das Kreuz ist das Vektorprodukt im [mm]\mathbb{R}^3[/mm]. Ist speziell die Fläche der Graph einer Funktion [mm]f[/mm], also

[mm]\varphi(u,v) = \left( u,v,f(u,v) \right) \ \ \text{mit} \ \ (u,v) \in B[/mm]

so folgt

[mm]\frac{\partial \varphi}{\partial u} = \begin{pmatrix} 1 \\ 0 \\ \frac{\partial f}{\partial u} \end{pmatrix} \, , \ \ \frac{\partial \varphi}{\partial v} = \begin{pmatrix} 0 \\ 1 \\ \frac{\partial f}{\partial v} \end{pmatrix}[/mm]

also

[mm]\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} = \begin{pmatrix} - \frac{\partial f}{\partial u} \\ \frac{\partial f}{\partial v} \\ 1 \end{pmatrix}[/mm]

Und mit dem Betrag hiervon bekommt man, wenn man nachträglich [mm]u[/mm] in [mm]x[/mm] und [mm]v[/mm] in [mm]y[/mm] umbenennt:

[mm]\mathrm{d}o = \sqrt{1 + \left( \frac{\partial f}{\partial x} \right)^2 + \left( \frac{\partial f}{\partial y} \right)^2} ~ \mathrm{d}(x,y)[/mm]

Und darüber mußt du nun zur Berechnung des Flächeninhalts [mm]A[/mm] von [mm]\mathfrak{F}[/mm] integrieren:

[mm]A = \int_{\mathfrak{F}}~\mathrm{d}o = \int_B \sqrt{1 + \left( \frac{\partial f}{\partial x} \right)^2 + \left( \frac{\partial f}{\partial y} \right)^2}}~\mathrm{d}(x,y)[/mm]

Bezug
                                
Bezug
Bereichsintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:53 Mo 14.07.2008
Autor: tresen

danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]