www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Berechnung von y
Berechnung von y < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von y: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Sa 10.11.2007
Autor: Nicksve

Aufgabe
Für welche y [mm] \in \IR [/mm] hat die Gleichung  [mm] y=ln(x^2+3x+3) [/mm]  eine Lösung im Intervall ]-unendlich, -1]?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo erstmal.
Also wir haben diese Frage in einer Übung in der Uni bekommen. Ich habe auch den kompletten Lösungsweg(s. unten), nur kann ich diesen leider nicht nachvollziehen. Ich weiß z.B. gar nicht, was überhaupt in der Aufgabe gefordert ist...Und die Lösungsschritte bringen mich auch nicht weiter. Ich bräuchte also sozusagen eine Erklärung, was genau warum gemacht wurde. Ich wäre über Hilfe sehr dankbar.

LG Nick

Lösungsweg:

Es gilt: [mm] x^2+3x+3 [/mm]
          [mm] =(x^2+2*(3/2)x+(9/4))-(9/4)+3 [/mm] (quadratische Ergänzung)
          [mm] =(x+(3/2))^2+3/4 \ge [/mm] 3/4 > 0 für alle x [mm] \in \IR [/mm]
der rechte Term ist für alle  x [mm] \in \IR [/mm] definiert
              [mm] ln(x^2+3x+3)=ln((x+(3/2))^2+(3/4)) \ge [/mm] ln(3/4)
Die Gleichung ist also höchstens dann lösbar, wenn y [mm] \ge [/mm] ln(3/4) ist.
In diesem Fall gilt: y= [mm] ln((x+(3/2))^2+(3/4)) [/mm]
                       [mm] =e^y=(x+(3/2))^2+(3/4) [/mm]
                [mm] \gdw e^y-(3/4)=(x+(3/2))^2 [/mm]
                [mm] \gdw [/mm] x+(3/2)    =+- [mm] \wurzel{e^y-(3/4)} [/mm]
                [mm] \gdw [/mm]  x=-(3/2) +- [mm] \wurzel{e^y-(3/4)} [/mm]
                  [mm] \underbrace{-(3/2)}_{<-1} [/mm]

        
Bezug
Berechnung von y: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Sa 10.11.2007
Autor: angela.h.b.


> Für welche y [mm]\in \IR[/mm] hat die Gleichung  [mm]y=ln(x^2+3x+3)[/mm]  
> eine Lösung im Intervall ]-unendlich, -1]?

Hallo,

es ist gefragt, welche y Du einsetzten kannst, so daß Du ein passendes x aus dem Intervall ]-unendlich, -1] findest, welches die Gleichung löst.

Da die Logarithmusfunktion überhaupt nur auf positiven Werten definiert ist, findet man zunächst heraus, für welche x  [mm] g(x):=x^2+3x+3 [/mm] positiv ist.

Diese Frage wird in diesem Abschnitt behandelt:

> Lösungsweg:
>
> Es gilt: [mm]x^2+3x+3[/mm]
>            [mm]=(x^2+2*(3/2)x+(9/4))-(9/4)+3[/mm] (quadratische
> Ergänzung)
>            [mm]=(x+(3/2))^2+3/4 \ge[/mm] 3/4 > 0 für alle x [mm]\in \IR[/mm]

>  
> der rechte Term ist für alle  x [mm]\in \IR[/mm] definiert

Ergebnis: für alle x [mm] \in \IR [/mm] ist [mm] x^2+3x+3 [/mm] positiv, das liest man aus der Scheitelpunktform, in welche die Parabel [mm] x^2+3x+3 [/mm] umgewandelt wurde, ab.

Nun bleibt die Frage, welche y [mm] \in \IR [/mm] man mit [mm] y=ln(x^2+3x+3) [/mm] überhaupt erreichen kann.

Es ist ja [mm] x^2+3x+3=(x+(3/2))^2+3/4 \ge [/mm] 3/4, und da ln monton wachsend ist, erhält man

>                [mm]ln(x^2+3x+3)=ln((x+(3/2))^2+(3/4)) \ge[/mm]
> ln(3/4)

>  Die Gleichung ist also höchstens dann lösbar, wenn y [mm]\ge[/mm]
> ln(3/4) ist.

Man weiß nun, daß man für y< ln(3/4) überhaupt nicht nach einer Lösung zu suchen braucht, weil es keine gibt.

Die Frage, ob man nun wirklich zu jedem y mit y [mm]\ge[/mm] ln(3/4)  ein passendes x findet, steht noch im Raum.

Dieses  passende  x (meist sind es ja zwei) wird im letzten Abschnitt ermittelt.

Gruß v. Angela

>  gilt: y= [mm]ln((x+(3/2))^2+(3/4))[/mm]
>                         [mm]=e^y=(x+(3/2))^2+(3/4)[/mm]
>                  [mm]\gdw e^y-(3/4)=(x+(3/2))^2[/mm]
>                
>  [mm]\gdw[/mm] x+(3/2)    =+- [mm]\wurzel{e^y-(3/4)}[/mm]
>                  [mm]\gdw[/mm]  x=-(3/2) +- [mm]\wurzel{e^y-(3/4)}[/mm]
>                    [mm]\underbrace{-(3/2)}_{<-1}[/mm]  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]