www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Berechnung von Fläche
Berechnung von Fläche < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Fläche: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:12 So 11.11.2007
Autor: Cifer

Aufgabe
Berechnen Sie die Fläche, die vom Graphen der Funktion und der x-Achse eingeschlossen wird.
f(x)=-2x³-4x²+48x

Hallo,
also bei dieser aufgabe komme ich nicht weiter.Was ich zuerst mache ist ableiten:
f(x)=-2x³-4x²+48x
f´(x)=-2x(x²+2x-24)
danach will ich die pq formel für (x²+2x-24) anwenden.
dann bekomme ich für x1=6 raus und für x2=-4

dann mache ich :
[mm] \integral_{-4}^{6}{f(-2x³-4x²+48x) dx} [/mm]
daraus ergibt sich für F(-4)=-128 und für F(6)-288

aber das ist falsch glaube ich.Die Lösung wurde mir mit 674 2/3 gegeben.
wenn mir jemand helfen könnte wäre das echt nett .
Danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berechnung von Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 So 11.11.2007
Autor: Sierra

Hallo!

Deine Nullstellen stimmen leider nicht. Du siehst doch auch schon anhand der Funktion, dass eine Nullstelle bei x=0 sein muss.
Durch das ableiten der Funktion und durch die Bestimmung von Nullstellen der Ableitung bestimmst du die Extrempunkte von f(x) und nicht die Nullstellen.
Da deine Funktion eine Funktion 3. Grades ist, fehlen dir, abgesehen von x=0, vermutlich noch 2 weitere Nullstellen.
Was du noch beachten musst, ist der Unterschied zwischen Integral und Fläche, so musst du, um die Fläche zu berechnen, erst das Integral von der ersten Nullstelle bis zur zweiten Nullstelle berechnen, und dann das Integral von zweiter bis dritter Nullstelle. Die beiden Werte als Betrag addiert ergeben dann die Fläche. Würdest du das Integral von erster Nullstelle bis zur dritten Nullstelle berechnen, so würdest du nicht die von dir gesuchte Fläche erhalten!
Versuch' also nochmal die richtigen Nullstellen zu bestimmen und berechne daraus dann die Fläche! Die Nullstellen kannst du entweder durch ausprobieren oder durch Polynomdivision bestimmen.
(Ich komme übrigens ebenfalls auf die von dir genannte Lösung)

Lieben Gruß

Sierra

Bezug
        
Bezug
Berechnung von Fläche: rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 So 11.11.2007
Autor: Cifer

danke erstmal für die ausführliche antwort.
ich habe es jetzt mehrmals versucht, komme aber leider nicht auf das ergebnis.
ich weiß nicht wie ich den nullpunkt berechne.
ich habe ja sozusagen:
x1=6
x2=-4
und nullp.= ?
dann müsste ich ja
[mm] \integral_{-4}^{nullp.}{f(-2x³-4x²+48x) dx} [/mm]
und
[mm] \integral_{nullp.}^{6}{f(-2x³-4x²+48x) dx} [/mm]
berechnen oder?! nur komme ich leider nicht auf den nullpunkt.

Bezug
        
Bezug
Berechnung von Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 So 11.11.2007
Autor: Sierra

Hallo nochmal :)

Ich glaube ich weiß nun, was bei deiner Nullstellenbestimmung schief gelaufen ist.
Ich denke, du hast am Anfang der pq-Formel ein Minus unterschlagen:
Aus (x²+2x-24) folgt in der pq-Formel:
-1 [mm] \pm \wurzel{25} [/mm]
Und daraus die Nullstellen bei -6 und 4 sowie die bei x=0 die wir ja schon hatten.
Nun musst du nur noch das Integral von -6 bis 0 ausrechnen, das Ergebniss schreibst du dir dann als positiven Wert auf (sofern er nicht schon positiv ist).
Danach addierst du das Integral von 0 bis 4, ebenfalls den positiven Wert.
Nun müsstest du auf die richtige Lösung kommen!

Lieben Gruß

Sierra

Bezug
        
Bezug
Berechnung von Fläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 So 11.11.2007
Autor: Cifer

Och nö,blödes vorzeichen jetzt sehe ich es auch! vielen dank für deine mühen zu so später stunde.dann werde ich die jetzt mal lösen :).
nochmals vielen dank und noch einen schönen abend!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]